
Table of CONTENTS
1. Abstract ..1
2. Content Overview .. 1
3. Overall Design ... 2

3.1 Open Source Mobile Blockchain System...2
3.2 Blockchain Storage Mechanism.. 3

3.2.1 RSD Storage Mechanism.. 3
3.2.2 Private Data Storage ...5
3.2.3 Distributed Storage ...5

3.3 Blockchain Network Mechanism...6
3.3.1 Full-Link Duplex Communication Network ..6
3.3.2 Node Addressing ...7
3.3.3 Bluetooth, NFC, AIRDROP Network Transmission...7

3.4 Blockchain Evolution... 7
3.5 Cross-Chain Transactions ..8

3.5.1 Cross-Chain Network Interconnection..8
3.5.2 Cross-Chain Decoupling ...9
3.5.3 Cross-Chain Asset Interchange ..9

3.6 Three-Layer Blockchain Architecture ..10
3.7 Large Block ...11
3.8 Address Private Key Management Mechanism-My Secret .. 11
3.9 Automatic Upgrade ...11
3.10 Fork Merging...12
3.11 Distributed Computing ..12

4. Consensus Protocol .. 13
4.1 Consensus Algorithm of BIWMeta ...13

4.1.1 TPOW+DPOS..13
4.1.2 Miner Protocol ..14

4.1.2.1 Authorized Creation Protocol .. 14
4.1.2.2 Genesis Basic Protocol ..14
4.1.2.3 Consensus Incentive Agreement .. 14
4.1.2.4 Block Forging Agreement ... 14
4.1.2.5 Contract Execution Protocol ...14
4.1.2.6 Event Processing Protocol ...15
4.1.2.7 Proof of Algorithm Protocol ...15
4.1.2.8 Network Communication Protocol .. 15

4.2 Block Forger (Miner Node) Rotation ...15
4.2.1 Multi-Node, Multi-Process Block-Generating Method..15
4.2.2 Block Forger Election Algorithm.. 16

4.2.2.1 Becoming a Trustee ...17
4.2.2.2 Entering the Candidate zone... 17
4.2.2.3 Becoming a Forger .. 17

4.2.3 Distributed Transaction Synchronization ..18
5. Programmable Contracts ..19

5.1 Smart Contracts .. 19
5.2 Digital Products (DP/NFT) ...20
5.3 DeFi Support ..20

6. Programmable Digital Asset Issuance..20
6.1 Destruction Issuance (Deflation Mechanism) ...20
6.2 Decentralized Asset Exchange .. 20

7. Chain Services ... 21
7.1 Chain Domain Name-LNS..21
7.2 DWeb..21
7.3 Dual Offline Payment ..22
7.4 On-chain Red Packet ..22
7.5 Service Market ...22
7.6 Shuttling the World ... 22

8. Interface Documentation .. 23
8.1 Interface Incoming Parameters and Return Parameters Description 233

8.1.1 Example of Passing/Entering Parameters .. 233
8.2 Basic Interface ...234

8.2.1 Getting BIW Version Number ...234
8.2.2 Getting the Current Latest Block of the Local Node..244
8.2.3 Getting the Specified Block ...244
8.2.4 Getting the Specified Event ... 24
8.2.5 Getting the Last Transaction of an Account ..25
8.2.6 Creating an Account .. 25
8.2.7 Getting Node Status ...26
8.2.8 Getting the Last Transaction of the Account According to the Transaction
Type.. 26
8.2.9 Getting the Event Type..26

8.3 Event Class Interface Usage Description ... 27
8.3.1 Transfer Events ...27

8.3.1.1 Creating a Transfer Event .. 27
8.3.1.2 Creating a Transfer Event (with Security Key) .. 28
8.3.1.3 Sending a Transfer Event ...28

8.3.2 Setting Up a Secure Password Event ... 29
8.3.2.1 Creating a Set-Security-Password Event ...29
8.3.2.2 Creating a Set-Username Event (with Security Key)29
8.3.2.3 Sending a Set-Security-Password Event ... 29

8.3.3 Setting the User Name Event ... 290
8.3.3.1 Creating a Set-Username Event ... 290
8.3.3.2 Creating a Set-Username Event (with Security Key) 300
8.3.3.3 Sending a Set-Username Event ..300

8.3.4 Registered Trustee Events ... 301
8.3.4.1 Creating a Registered Trustee Event ...301
8.3.4.2 Creating a Registered Trustee Event (with Security Key)301
8.3.4.3 Sending a Registered Trustee Event ... 311

8.3.5 Receiving Polling Events ...311
8.3.5.1 Creating a Receive-Vote Event ...311
8.3.5.2 Creating A Receive-Vote Event (with Security Key) 312
8.3.5.3 Sending and Receiving Vote Events ..322

8.3.6 Rejecting Votes ..322
8.3.6.1 Creating A Reject-Vote Event ... 322
8.3.6.2 Creating a Reject-Vote Event (with Security Key) 323
8.3.6.3 Sending a Reject-Vote Event ...333

8.3.7 Polling Events ... 333
8.3.7.1 Creating a Voting Event ...333
8.3.7.2 Creating a Voting Event (with Security Key) ...334
8.3.7.3 Sending and Receiving a Polling Event ..344

8.3.8 Publishing Dapp Events ..334
8.3.8.1 Creating a Release-Dapp Event ... 334
8.3.8.2 Creating an Issue-Dapp Event (with Security Key)35
8.3.8.3 Sending an Issue-Dapp Event ... 35

8.3.9 Dapp Purchase Events ...36
8.3.9.1 Creating a Purchase-Dapp Event ...36
8.3.9.2 Creating a Purchase-Dapp Event (with Security Key) 36
8.3.9.3 Sending a Purchase-Dapp Event ..36

8.3.10 Depositing Events ...37
8.3.10.1 Creating a Deposition Event .. 37
8.3.10.2 Creating a Deposit Event (with Security Key) ...37
8.3.10.3 Sending a Deposit Event ... 38

8.3.11 Equity Issuance Events .. 38
8.3.11.1 Creating an Equity Issuance Event ...38
8.3.11.2 Creating an Equity Issuance Event (with Security Key)39
8.3.11.3 Sending an Equity Issuance Event ... 39

8.3.12 Equity Destruction Events ..39
8.3.12.1 Creating an Equity Destruction Event ...39
8.3.12.2 Create an Equity Destruction Event (with Security Key)40
8.3.12.3 Sending an Equity Destruction Event ... 40

8.3.13 Equity Exchange Events ..40
8.3.13.1 Creating an Equity Exchange Event ...40
8.3.13.2 Creating an Equity Exchange Event (with Security Key)41
8.3.13.3 Sending an Equity Exchange Event ... 42

8.3.14 Acceptance of an Equity Exchange Event ..423
8.3.14.1 Accepting an Equity Exchange Event ..42
8.3.14.2 Creating an Accept-Equity-Exchange Event (with Security Key)43
8.3.14.3 Sending an Accept-Equity-Exchange Event .. 43

8.4 Instructions for Using the Node Management Interface ...44
8.4.1 Safety Close of Node... 44
8.4.2 Setting Node Password ...44
8.4.3 Verifying Node Password ...45
8.4.4 Adding Node Administrator ..45
8.4.5 Getting Node Administrator ... 45
8.4.6 Verify Node Administrator ...46
8.4.7 Deleting Node Administrator ... 46
8.4.8 Resetting Node Administrator ..46
8.4.9 Binding Node Accounts ..47
8.4.10 Getting Node Trustee ... 47
8.4.11 Querying All Forgers Registered by the Node ...47
8.4.12 Query Details Of the Forger Registered by the Node ...48
8.4.13 Getting Node Details ...48
8.4.14 Node Information Query ... 48
8.4.15 Setting Node Configuration Information ...49
8.4.16 Getting Node Configuration Information.. 49

8.4.17 Getting Node State (Real-Time Information) ...49
8.4.18 Getting Node Access Statistics .. 49
8.4.19 Getting Running Log Type of the Node...50
8.4.20 Getting the List of the Node Running Log.. 50
8.4.21 Getting Contents of the Node Running Log.. 51
8.4.22 Deleting the Node Running Log...51
8.4.23 Getting the Node Email Address .. 51
8.4.24 Setting the Node Email Address ... 52
8.4.25 Verifying Node Trustees by Node Private Key ...53
8.4.26 Setting Node Access Whitelist ... 53
8.4.27 Getting Node Access Whitelist .. 54
8.4.28 Deleting Node Access Whitelist .. 54
8.4.29 Getting Network-Related Information About a Node Process55
8.4.30 Getting Node Process CPU Information ...55
8.4.31 Getting Node Process Memory Information .. 56
8.4.32 Sending Node Status at Regular Intervals ...56
8.4.33 Timed Sending of Node CPU, Memory and Network Information 57
8.4.34 Getting Information About a Node ..57
8.4.35 Getting Node Status ..57

9. Application Tools ... 57
9.1 Instant Messenger-Secret Chat .. 57
9.2 Five Knocks ...58
9.3 Eye of God..58

10. BIW Foundation and Equity Distribution .. 58
11. Disclaimer ...59

1

1. Abstract

Meta-universe is a trusted digital value interaction network based on web3.0
technology system and operation mechanism support, and is a new web3.0 digital
ecology with public chain as its core. It provides immersive experience based on
virtual reality technology and builds a new social and economic system based on
blockchain technology, which makes the virtual world and the real world closely
integrated in the economic system, social system and identity system. The blockchain
underlying operating system is the core of the meta-universe economic system
construction. BIWMeta, the public chain of BIW metaverse built on top of the world's
leading open source BIW blockchain operating system, inherits the excellent
performance of BIW public chain underlying high efficiency, security, high scalability
and high carrying capacity, and on this basis, for the fundamental characteristics of
metaverse, it provides distributed storage, end-to-end communication, distributed
digital identity, distributed credit system, large-scale consumer-grade applications,
virtual reality technology interface, cross-chain compatibility, etc. Application-level
breakthroughs and innovations have been made, aiming to become a global super
meta-universe public chain system and support 5 billion Internet users worldwide to
step into the new meta-universe world.

2. Content Overview

BIWMeta is a meta-universe super public chain built on top of the world's leading open-source
Biochain Forest blockchain operating system. Through its series of disruptive innovations at the
level of the underlying core components of the blockchain, it realizes a strong support for the
construction of the metaverse economic system. Core features of BIWMeta include:
1) High Scalability
Adopting energy-saving, secure and efficient consensus algorithm, combined with native
cross-chain, distributed storage, distributed computing and other functions, it can support billions
of users worldwide to develop and experience Web3.0 and metaverse applications.

2) Mobile terminal direct connection to the chain
BIWMeta breaks the constraint that traditional blockchain technology must run on x86 PC, and
extends the application scope of blockchain to mobile terminals, such as Android terminal, IOS
terminal, Windows terminal, Linux, Unix and other terminals support direct connection to the
chain, and the terminal is the node and the node is the service. Therefore, each individual can
directly enter the meta-universe economic network system through mobile terminals.

3) Support distributed digital identity DID
Through BIWMeta distributed infrastructure, a new type of self-sovereign and verifiable
distributed digital identity can be realized. Unlike the centralized platform where the platform
controls the digital identity, the digital identity on BIWMeta is in the hands of the user. the
advantages of BIWMeta distributed digital identity include: highly secure, the user's identity
information will not be leaked and the information is held by the user; autonomous and
controllable, the user can manage the identity independently and control the sharing of their
identity data; portable, the identity identity owners are able to use it wherever they need it.

4) New support for Defi
BIWMeta supports both DeFi for various digital assets (Tokens) and DeFi for digital products DPs.
DPFi is BIWMeta's unique liquidity protocol for digital products DPs, which allows DP owners to
obtain secured equity loans from peer-to-peer liquidity providers in a fully de-trusted manner,

2

increasing the liquidity of the DP assets they own. DP liquidity providers use DPFi to earn
attractive returns or have access to DPs at a price below their market value in the event of loan
default.

5) Digital Asset Interoperability Across Chains
Through homogeneous cross-chain technology as well as heterogeneous cross-chain technology, it
enables the issuance and management of digital assets and digital products/NFT, and supports
parallel chain, evolutionary chain, sub-chain, multi-chain concurrency and cross-chain asset
interoperability.

6) Support for XR and other digital interaction technologies
The unique mobile terminal chain technology can access any XR hardware device to realize the
high integration of metaverse immersion experience and economic system and value flow system,
and truly realize the leap of XR technology from virtual reality game to metaverse social
economy.

7) Complete development tools
It has complete development documents, interfaces and SDK support, and has complete tools for
blockchain configuration management, service hall, industry collaboration and transformation,
which can meet the development needs of global developers based on the underlying blockchain.

3. Overall Design

3.1 Open Source Mobile Blockchain System

Traditional blockchain technology applications are generally applicable to the service side with
large data computing capacity and high equity. With the gradual exploration of blockchain
technology, it is found that the current blockchain applications as well as blockchain technology
solutions generally have a problem: it does not support mobile. The upper layer of blockchain
applications all require third-party service nodes to provide mobile services. For a blockchain
technology based on decentralized design and solving credit problems, it is against the original
design intention that a third-party credit intermediary needs to be introduced to provide terminal
services.
The future blockchain needs to support mobile terminals. First of all, blockchain is a new
generation infrastructure built on top of the Internet to solve the credit problem, and it brings
progress. If the applications built on blockchain still require the use of traditional PCs to carry out
access, then this is somehow a retrograde step. If blockchain is only used on the server side to
solve the problem of inter-institutional credit, it will limit the development of blockchain to a
great extent. If the application of blockchain cannot face the end-user and let the end-user perceive
the existence of blockchain, then this application is not essentially different from the traditional
centralized application.
When the blockchain does not support mobile terminals, it is still possible to build the application
on the blockchain and provide mobile terminal services, but this requires additional third-party
nodes for providing data transit services between the blockchain and the mobile terminal. This
way of introducing third-party nodes essentially introduces third-party central credit, which is
against the original design intention of blockchain decentralization. In a sense, when users cannot
directly participate in the blockchain, there is no essential difference from not using the
blockchain, and they still rely on central credit to provide services, and this form of blockchain
can only be called distributed chain database in a sense.
Therefore, blockchain must support mobile terminals, otherwise when users do not perceive the
positive meaning brought by blockchain, its will largely restrict and limit the development of
blockchain.
However, there are many problems encountered in the process of doing the design of blockchain
for mobile terminal, such as:
(1) Insufficient computing power of mobile terminals

3

(2) Unstable mobile networks and inability to stay online
(3) limited storage space of mobile terminals
Therefore, how to improve the overall architecture of blockchain has become a challenge that
must be solved to address mobile blockchain.
BIWMeta has built a mobile-based blockchain system - BIWS, known as Bioforest Chain System,
which breaks the constraint that traditional blockchain technology must run on x86 PC and
extends the application of blockchain to mobile terminals, such as cell phones, tablets, smart
wearable devices and IoT devices platforms.
BIWS includes: core application components, core blockchain underlying technology components,
platform infrastructure and developer community.
1) Core blockchain underlying technology components: delegated DPOP consensus mechanism,
security mechanism, blockchain storage, chain duplex communication network, multi-chain
architecture (cross-chain transactions & blockchain evolution), etc.
2) Core application components: programmable contracts, programmable assets, application
framework core protocols, on-chain services, APIs and visual development tools, etc.
3) Platform infrastructure: used to carry the basic requirements for the operation process of
blockchain systems, including Android, Windows, Linux, UNIX, macOS and other operating
systems.
4) Developer community: BIWMeta DAO governance, toolkit download, tutorial services, etc.

Next, we will introduce the innovations of each technology of BIWMeta mobile blockchain
system in detail.

3.2 Blockchain Storage Mechanism

3.2.1 RSD Storage Mechanism

Data storage capacity is the foundation of blockchain landing. Due to the special nature of
blockchain, it is impossible to pre-determine and require participating nodes to provide
large-capacity and high-throughput data storage devices, so compared with traditional centralized
IT construction, the following considerations need to be added during the design.
1) Storage capacity
Traditional IT construction can require the provision of large-capacity disk arrays to increase
capacity or separate business and historical data to reduce storage pressure and system
performance pressure, but blockchain networks cannot be accomplished by the above two
methods.
2) Throughput Performance
In traditional IT construction, nodes can be required to adopt faster storage devices such as high
speed and SSD, or adopt Raid1 array disks and increase the number of disks, or spread the
throughput pressure to multiple nodes, or preload data to memory, etc. to effectively improve the
throughput performance, but it does not work in blockchain scenario because most participating
nodes do not have these devices and conditions.
3) RSD Mobile Storage Mechanism
In the traditional IT construction, the system architecture is designed according to the centralized
server, and in order to take into account the cost of the terminal, the terminal does not participate
in the business logic calculation, and the terminal also does not store business data, so there is
almost no need for mobile storage in the terminal, and the small amount of storage is also user
files and personal data information that do not participate in the business logic operation. The
traditional storage design approach cannot be applied in the blockchain scenario.
Because of the practical difficulties, most blockchains still follow the traditional IT construction
idea in storage design, where data are stored centrally in the participating nodes, and the terminal
participants (such as mobile wallets) are relayed through other participating nodes.

Problems of traditional storage ideas
1) Pseudo-decentralization

4

Because the terminal cannot directly access the blockchain, the actual data request and business
process are completed by other nodes, and the trustworthiness of the data is guaranteed by
whether the participating nodes cheat or not, which is against the original intention of
decentralization of the blockchain.
2) Pseudo-node
If the terminal cannot access the blockchain network, or if it accesses the blockchain network but
the data is incomplete, it will not be able to effectively participate in the governance of the
network (under the traditional consensus mechanism). Although it looks like a node and can
complete indirect communication by means of bridging to a certain extent, it is still not considered
a qualified participating node.
3) Inability to participate in consensus
When there is a missing terminal network and data, it will cause the terminal to lose the basis of
participation in consensus. Not being able to participate in consensus often means not being able
to participate in block building, and this means that the rewards that accompany block building
will not be available, which is unfair in a sense to such terminals that contribute the same level of
participation.

BIWMeta's proprietary RSD mechanism
We have redesigned the way we store blockchain data, and we call it Relational Object Storage
(ROS).
For the future development of the BIWMeta ecosystem, to encourage more actors and endpoints
to access the BIW network and receive fair rewards, we need to design a solution that takes into
account the access problems faced by different endpoints and provides an effective and reliable
solution. To this end, we first proposed the concepts of The R-Node (real-time node), The S-Node
(service node), and The D-Wallet (distributed wallet) to support high-performance network nodes
and distributed service nodes, respectively, and to ensure that they can also participate in the
consensus mechanism, we redesigned the data storage mechanism of the blockchain. In order to
implement these concepts and ensure that they can also participate in the consensus mechanism,
we redesigned the data storage mechanism of blockchain.

Multidimensional sharded storage
BIWMeta metaverse data storage not only adopts multiple disks, but also adopts the patented
storage technology of "multi-dimensional slice expansion", which allows data to be stored in large
quantities while maintaining logical uniformity in the application layer. The data can be stored in
huge amount, but it can keep the logical unity in the application layer. The scaling technology
enables qualitative improvement of storage performance and lays a solid foundation for future
comprehensive commercial applications.

Memory image storage
In order to solve the problem of data retrieval efficiency, we introduced Mongodb, a NoSQL
database that is currently in common use, mainly using its fast retrieval capability in the case of
long chained data. Since it is not small in storage size and not suitable for mobile, we adapted and
integrated it with SQLite to allow nodes to participate in consensus while remaining light in size,
providing us with a basis for fair rewards.

Checkpoint storage
In the RSD mechanism, two kinds of databases have their own division of labor, and the modified
one; for the mobile terminal that needs to participate in the consensus, it needs to store part of the
complete block data locally and participate in the consensus mechanism through this part of data.
In order to minimize the amount of data stored in the terminal and the length of synchronization,
we have established the patented technology of "key checkpoint storage". The terminal no longer
needs business calculations and consumes additional calculation time in the synchronization
process, but only needs to store the block data after the checkpoint. At the same time, it provides
fast start-up capability in case of business node failure. For the establishment of key checkpoints,
we use the same consensus mechanism as the block to complete.

Hash tree storage

5

We use Mongodb to store block hash trees to provide fast identification of forking issues during
the execution of the consensus mechanism. The hash tree storage is designed to allow the business
to discard burden data during the computation process, allowing direct computation without losing
historical information.

3.2.2 Private Data Storage

Using photos and videos to record life is almost one of the necessary parts of people's working life
in modern society, and this numerous photo data we often can't carry completely using portable
devices, we generally use a cloud device to store these photos and videos of us, but some of our
photos and videos may involve the confidentiality of our work and the privacy of our life, so that
we are not so comfortable to store in the public In this context, some solutions propose to use
offline encryption tools to encrypt photos and videos, but this in turn increases the complexity of
sharing these data within a specific range. In addition, since these tools are still provided by the
original organizations and the data is still stored by the original organizations, to a certain extent,
people can't completely trust whether these tools are really encrypted or whether they have
secretly stored an extra copy before encryption, which makes it difficult to promote the service of
private storage when there is a real demand for private photo and video storage. There is still no
real credible tool or platform for storing and sharing private photos and videos, and other data
such as financial data, diaries, memos, contracts and other data with the same kind of needs are
facing the same problem. So, how to store and share private photos and videos securely without
increasing the complexity of storage and sharing is an urgent problem.
BIWMeta provides a method and its device for secure storage and sharing of private data, by
creating group information and permissions, obtaining the group number assigned to the group by
the blockchain and assigning member account addresses to the group number, encrypting the
public keys of group members using ring signatures and transferring the encrypted data to
blockchain transactions, completing the creation and assignment of group permissions, and when
storing When the private data is stored, the ring signature string of the group is obtained, and the
data to be stored is encrypted using the said ring signature string, and the encrypted data is
converted into blockchain transactions and submitted to the blockchain, and when the data is read,
the visitor's private key is used to decrypt the data, and the decrypted data is restored according to
the original data type, which realizes the role of private storage and limited sharing of data. It
solves the problems of data leakage and data custodian's guarding and stealing.

3.2.3 Distributed Storage

In this era of information technology, data is everywhere, and it has become the basis of our
modern life and work, but with the development of information, there are also a lot of negative
incidents, such as unscrupulous service providers who sell users' privacy data professionally, and
hacker gangs who specialize in stealing users' data from major information platforms, and so on.
In the face of such a data crisis, there are quite a number of programs in the world that provide
data security protection, such as encrypted storage, and hosted storage; in the encrypted storage
program, since the data does not leak depends on the private key not to be leaked, and the private
key comes from the service provider, the service provider to provide private key services in the
process of strictly do not leak the private key is a new data security problem; in the data hosted
storage program, the security of the data depends on the hosted storage In the data hosting storage
program, the security of data depends on the technical strength and moral quality of the hosting
party, and the repeated data leakage incidents of data hosting platform make people gradually
reduce their trust in the technical strength of the hosting party, and the problem of custodian's
guarding and stealing from time to time adds to people's worries. The reason behind people
continuing to use these services despite the continuous data leakage incidents is that individuals
cannot provide such large storage capacity and cannot maintain a data service device that can
provide services anytime and anywhere. So how to provide a storage solution that does not require
personal maintenance, does not require third-party hosting, and can provide very large scale
storage capacity becomes an urgent problem to solve.

6

BIWMeta builds a decentralized distributed data storage method by creating an account on the
blockchain and saving the private key, filling in the description information of the uploaded
resource, attaching the resource ready to be uploaded as an attachment to a blockchain transaction,
completing the upload of the resource by processing the blockchain transaction that is reserved
and placing the transaction into the block; starting a node that is in the said blockchain, the node
obtains the local file distribution table, detects the blockchain network according to the file
distribution table, synchronizes the data resources on the network with higher scarcity than local
ones to the local file repository, and repeats the above steps to synchronize resources every day to
complete the synchronization of node resources; accounts that need to download resources select
the needed data resources for downloading by looking up the data resources in the network,
solving the problem of unlimited and reliable storage of data in the decentralized environment.
This solves the problem of unlimited and reliable data storage in a decentralized environment.

3.3 Blockchain Network Mechanism

3.3.1 Full-Link Duplex Communication Network

The blockchain network is the foundation for establishing the whole BIWMeta, and the traditional
blockchain network basically adopts the socket method.
(1) Socket has the following characteristics
a. Rich component library, supported by programming languages from long ago, such as cobol and
c++ in the 1960s and 1970s.
b. Simple logic and easy development, only need to care about the content of the transmission, not
the underlying communication logic.
c. Different regional networks cannot interoperate directly and need additional components to
support them, such as GRPC.
(2) Problems of Socket
a. Weak autonomous control of network connections means that the data is real-time and the
efficiency of the transmission is difficult to control.
b. Socket-based applications cannot communicate directly with browsers, which means that
applications with Webkit as a core cannot directly access the blockchain network.
c. The active communication capability for service-to-end is weak, and it is difficult to establish
an effective real-time push mechanism.

Higher standard BIWMeta network
To achieve direct participation of mobile terminals in the consensus mechanism, we have
redesigned the communication domain. We redesigned the blockchain P2P network, which we call
it - Full Link Duplex Communication.
For the future development of BIWMeta ecosystem, we need to design it in such a way that any
endpoint type can easily access us, while most of the current blockchain networks still need a
centralized server (e.g. mobile wallets) to provide external services, so we put forward higher
design requirements for BIWMeta --We redesigned the P2P network because there is no
ready-made P2P network to support this.
(1) Introduction of WebSocket mechanism
We introduced the WebSocket mechanism for the scenario of high real-time requirements. It
provides the basis for us to provide highly reliable and high-performance BIWMeta.
(2) Combination of "HTTP protocol" and WebSocket protocol
In addition, we have introduced the most widely used protocol on the Internet, "HTTP protocol"
(we will gradually upgrade to HTTPS later), which is combined with the WebSocket protocol,
allowing BIWMeta's network capabilities to provide efficient interoperability not only between
nodes, but also across The network capability of BIWMeta not only provides efficient
interoperability between nodes, but also provides effective interoperability across regional
networks and terminal types, supports NAAS, and provides the basis for developing a truly
distributed application DAPP.

7

3.3.2 Node Addressing

With the emergence of Bitcoin, blockchain technology is increasingly recognized as a new layer
of infrastructure built on top of the Internet. In the future, there will be countless network nodes in
this facility, which are important components to support business operations on the blockchain,
and indicating specific operational nodes for business is one of the necessary capabilities in a
blockchain network. However, in the actual business operation environment, we need to adjust the
actual running nodes of our business due to the limitation of IP allocation by network operators,
change of business usage, server scale adjustment, etc., and after this adjustment, it will lead to the
nodes that can find our business on the blockchain can no longer find us. If we rely on a third
party to find us, it will break the peer-to-peer model of the blockchain and reduce the security;
then how to achieve a dynamic addressing capability within the blockchain network without
relying on any other third party, so that the business nodes can keep the business continuity no
matter how they change and always let the business nodes only need to remember a name to
always find us, becomes An urgent problem to be solved.
BIWMeta builds a blockchain-based dynamic addressing method and its system, by defining a
name protocol for the blockchain, and then handling the business by transferring the ownership
and manager of the region, and when addressing is needed, by updating the region where the
business node is located and resolving the corresponding region location, and then resolving the
region address of the originating business through this region, the business node can By using the
inter-chain protocol module and intra-chain protocol module in the protocol manager to process
the data of the blockchain nodes, and through the cooperation of the name management module,
ownership management module, sub-domain management module and location resolution module
in the region manager, the business nodes can be dynamically addressed, which keeps the
continuity of business and improves the business. It maintains business continuity and improves
the processing performance of business nodes in the blockchain.

3.3.3 Bluetooth, NFC, AIRDROPNetwork Transmission

Blockchain is a new distributed infrastructure and computing method that uses block-chain data
structure to verify and store data, distributed node consensus algorithms to generate and update
data, cryptography to secure data transmission and access, and smart contracts consisting of
automated script code to program and manipulate data.
Traditional data connection methods include Bluetooth connection, NFC connection, AIRDROP
connection, etc., but they can only exist between the device that sends the data request and the
device that is the target of the specific request, and it is not possible for other nearby devices to
establish a connection with third-party devices and send data.
Therefore, it is an important research direction in the blockchain field to establish the connection
between devices other than the device sending the data request and the third-party device and send
the data successfully.
BIWMeta builds a blockchain network transmission technology based on Bluetooth, NFC, and
AIRDROP, and builds a blockchain network transmission channel based on Bluetooth, NFC, and
AIRDROP transmission, where any node on said blockchain network is connected to the node that
needs to send messages to other devices by establishing a topological combination of Bluetooth,
NFC, and AIRDROP, but cannot When said node receives a request for sending data, said node
calculates the optimal data sending path based on the sending target address and the local topology
map and sends it; when the data finally reaches the sending target, the data is sent, and the
connection between other devices and third-party devices other than the device sending the data
request can be established and the data is successfully sent, solving the problem of two devices
that are not directly connected in an Internet-free environment. This solves the problem that two
devices that are not directly connected to each other cannot exchange data.

3.4 Blockchain Evolution

With the emergence of Bitcoin, the application scenario of blockchain technology is becoming
more and more extensive. Most of the existing blockchains do not support the structure of main

8

chain and evolutionary chain, and the few that do support evolutionary chain are actually different
data of the same node. There are some problems with this blockchain structure: for example, the
absence of evolutionary chain structure will likely lead to all future businesses being placed on the
main chain, which will result in all transaction bottlenecks being backlogged on the main chain,
thus leading to a low performance of the actual performance assignable to each business; and the
evolutionary chain structure of the same node as the actual storage and processing are in the same
node, which will lead to the node becoming more and more massive in the future, and the storage
and transaction These problems will become especially prominent when the blockchain carries a
larger volume of business.
BIWMeta constructs a complete set of independent evolutionary chain operation structure, that is,
the main chain makes an exact copy of the node exactly like itself, but does not copy the data and
the genesis block, and then generates the genesis block that has a dependency on the main chain
according to specific business rules, and sends all such business to the evolutionary chain for
processing thereafter, and the evolutionary chain is also deployed on an independent node to run
independently. This directly shares part of the business computation and storage consumption to
several different nodes, thus greatly improving the business processing capacity and providing a
basis for the unlimited expansion of the total amount of computation capacity transactions of the
whole network in the future.
With the authorization of BIWMeta Evolution Chain, enterprises can quickly customize and
develop different business evolution chains according to their business needs and application
scenarios to ensure the collaborative development of their multiple businesses. For businesses that
do not need to be completely on the chain, enterprises can also selectively on the chain and
independently develop DAPP or embedded development on the main chain of BIWMeta
Biochain.
Each evolutionary chain on BIWMeta is interoperable with the main chain, parallel chains and
other evolutionary chains, and combined with BIWMeta's unique cross-chain technology to
realize cross-chain asset transactions between each biological chain. These biological chains
together form a living biomass - the BIWMeta multi-chain ecogroup. This group realizes that each
evolutionary chain is independent of each other and interconnected with the main chain, ensuring
that each chain thrives in the ecological soil (BIWS mobile blockchain architecture). At the same
time, this group will continue to evolve and iterate and update with the participation of developers
and users all over the world to solve social problems.

3.5 Cross-Chain Transactions

3.5.1 Cross-Chain Network Interconnection

With the emergence of Bitcoin, the application scenario of blockchain technology is becoming
more and more extensive. In the current blockchain design, all kinds of chains are running
independently, and chain A and chain B do not intersect with each other and do not communicate
with each other, even though a side chain type of technology is used to achieve logical
interoperability between chains, there is actually no real data communication between the two
chains, but the third C chain is used to establish relationships with A and B respectively to achieve
This design has two problems, one is the waste of resources and the other is the inefficiency.
BIWMeta constructs a cross-chain network interconnection method, which is mainly used to solve
the interoperability problem between different chains. The different chains referred to here include
two completely different types of chains, and a main chain, evolutionary chain chain, and side
chain of the same type of chain; the interoperability referred to here is the network-level
interoperability.
The core design idea of cross-chain network interconnection is to create a generic network layer
adapter for different chains and establish the processing logic for each chain in the adapter. This
network adapter allows nodes of the same chain to keep their existing work unchanged among
themselves, but when it explicitly specifies the need to interoperate with other chains, it sends data
directly to the nodes of other chains directly. In addition to explicitly specifying the data sending
direction, the network adapter can also play the role of an invisible network highway, because
when the first node of the first chain needs to send data to the second node of the first chain, it

9

may happen that these two nodes cannot interoperate directly in different networks, then with the
use of the present invention, the first node of the first chain can send data to the second node of
the first chain with the help of the With the present invention, the first node of the first chain can
relay data with the help of a node of the second chain that has a common connection with the
second node of the first chain, and it does not care about the existence of the second chain in the
processing logic of the first chain.
BIWMeta not only realizes cross-chain network interconnection, but also solves the problems of
low probability of network interoperability, poor efficiency, and duplication and waste of
equipment.

3.5.2 Cross-Chain Decoupling

Blockchain is the most important infrastructure in the future credit era, and this infrastructure will
be composed of many blockchains, then cross-chain data interaction and cross-chain asset transfer
among many blockchains will be a necessary and important part. A single blockchain is originally
independent and fully autonomous, but once cross-chain is involved, it may need to rely on the
reliability of other chains. chain, it will reduce the reliability of the cross-chain data or assets of
the other chain, and if it relies on the other chain, it will reduce its own reliability. The trade-off of
reliability in the process of cross-chain interaction of blockchain seems to be an unsolvable
problem, and in the future there are bound to be numerous blockchains, and the demand of
cross-chain becomes rigid, so how to ensure the reliability of cross-chain interaction data or assets
without decreasing its own reliability becomes an urgent problem to be solved.
In order to solve the problem of conflict between cross-chain reliability and its own reliability,
BIWMeta introduces an in-chain granting mechanism, which is to confirm whether overdraft is
allowed or not based on the number of confirmed blocks of cross-chain data in the chain, and wait
for the recovery of cross-chain network reliability during the overdraft period, and if the overdraft
exceeds the waiting time, then all transactions down the link will be prohibited, but the
transactions of its own chain If the overdraft exceeds the waiting time, then all transactions down
the link will be disabled, but the transactions of its own chain will continue to be processed
normally until the cross-chain network resumes confirming the current overdraft transactions and
then resumes the transactions down the link.
BIWMeta's in-chain granting mechanism is to assume trustworthy processing of data that has been
confirmed in more than 1 block when the other party is down or gone, and to negatively account
for assets that are assumed to be trustworthy overdraft, and to list the outstanding debt. Waiting for
the other party to finish rebuilding itself and the outstanding debt is greater than 0 starts waiting
for the other party to buy the bill. When the other party has not finished buying the bill, all the
new cross-chain transactions added by the other party are queued up after the buy transaction, and
when the other party confirms the bill one by one, then starts processing the new transactions. In
this way, no matter whether the other party is in normal status or not, it does not affect its own past
verification and future transactions, and at the same time, it does not reduce the reliability of
cross-chain data. For if there is still a need to continue cross-chain transactions, it is only
necessary to clear all the previous outstanding bills list. That is, it can guarantee the reliability of
both, and release the interdependence of both, and solve the coupling between cross-chains.

3.5.3 Cross-Chain Asset Interchange

Digital assets are an important part of blockchain, and different blockchains often carry different
digital assets. In actual business scenarios, it is often necessary to exchange assets between
different blockchains, and this exchange often becomes a difficult problem; in order to minimize
the exchange of assets between chains, the current common solution is to establish a third
blockchain to establish exchange relationships with the parties that need to exchange assets
respectively, and then only indirectly exchange assets. In order to minimize the asset exchange
between chains, the current common solution is to establish a third blockchain to establish an
exchange relationship with the parties that need to exchange assets respectively before the asset
exchange can be carried out indirectly, which increases the steps of exchange, prolongs the time of
transaction, increases the complexity of related business, and prevents the further development of
upper layer applications due to the additional third chain, and the probability of the three chains

10

working consistently and stably in the actual operation is much lower than the original two chains,
so there are almost no real applications landed so far; later on Some new chains, in order to avoid
similar problems to the greatest extent, tend to adopt some kind of best practice standard, and the
standard also leads to a group of chains with almost the same overall structure, and there should
have been a better way to exchange and circulate the assets on these chains, but it has not
appeared yet either; Then how to design an asset exchange between different blockchains without
relying on a third chain becomes an urgent problem to be solved.
BIWMeta builds a method to circulate assets among multiple blockchains, including the steps of
exchanging new assets across chains, circulating the transferred new assets in the local chain, and
transferring the transferred new assets back to the original chain again. The transfer of new assets
back to the original chain also includes the sub-steps of establishing connection, confirming
transactions and validating assets.
The core of BIWMeta cross-chain transaction is to establish a micro-asset issuance channel
between different blockchains. When there is a need for cross-chain asset transactions, the
counterparty assets will be issued as new assets of this chain and the assets of this chain will be
frozen, so that the assets of other chains can circulate in the original chain and in the new chain to
achieve real cross-chain asset circulation, and at the same time, the total amount of original assets
can be kept unchanged.
1) The core function of the asset approver is to confirm the validity of the assets and manage the
total amount of assets. There are two core modules in the asset approver, the asset detection
module and the asset accounting module. The asset detection module is used to verify the
availability and authenticity of assets based on local configuration; the asset accounting
management module is used to manage all cross-chain assets of this chain and the allocation and
usage.
2) The core role of transaction manager is to help two chains reach a common asset cross-chain
status. There are two core modules in transaction manager, asset credential management module
and transaction status synchronization management module. The asset credential management
module is used to confirm and keep the source of cross-chain assets; the transaction state
membranes management module is used to collaborate with both parties to complete the issuance
confirmation of new assets.
3) The destruction of the freezer is used to ensure that the global total of the assets can be
maintained after the assets go to other chains. The core function of the destruction freezer is to
keep the global total of the chain intact. There are two core modules in the destruction freezer, the
asset freezing module and the asset destruction module. The asset freezing module is used to
freeze the assets of the chain when new external assets enter the chain, so as to ensure that the
total amount of the chain's assets remains in the original state after they go out; the asset
destruction module is used to destroy external assets when they are transferred back, and at the
same time release the chain's assets, so as to ensure that the total amount of the chain's assets
remains in the original state when external assets are transferred out.

3.6 Three-Layer Blockchain Architecture

With the emergence of Bitcoin, blockchain technology is increasingly recognized. The current
blockchain structure is inconvenient to use for business scenarios and business authorization with
huge data volume, especially for retrieval and verification, which often takes a lot of time to
retrieve, and many of them are doing useless retrieval. The current blockchain architecture is to
carry these data in one blockchain, so the speed of verifying and retrieving lottery tickets will be
very slow, because it needs to retrieve data of all outlets, all lotteries and all issues in the country
to get the information to be verified and retrieved.
BIWMeta provides a three-layer blockchain architecture that is fast in retrieving and verifying
data, and easy and fast to use to solve the tedious retrieval and verification. It consists of.
(1) building a chain for product-level authorization of issuance, where the issuance chain signs
and authorizes each product.
(2) constructing an authorization chain for participant authorization, where the issuance chain
authorizes the generation rights of the corresponding products to the participants in the
authorization chain; the authorization chain performs signature verification for each participant.

11

(3) Construct a production chain for recording actual production operation data, and piggyback the
signed participants' production operation in the production chain.
By separating the technical responsibilities of different steps through a three-layer blockchain, the
verification and retrieval of correctness are taken out from the massive data, thus significantly
improving the performance of blockchain when verifying and retrieving on massive data
applications, increasing the speed of retrieval and verification, and making it easy and fast to use.

3.7 Large Block

The blockchain based on the Biochain Forest system is able to forge blocks containing rich
information, thanks to the algorithms we use such as memory image type storage, multi-process
processing of events, and matrix broadcasting, which enable massive events to be processed in a
short time, and the forger will sign each event during the process. After the successful forging, we
will broadcast the block header to the blockchain network, and other nodes will enter the
synchronization process after receiving and verifying the block header information. Since the
synchronization of large blocks will consume more traffic and arithmetic power, we have designed
some strategies to ensure the stability of the nodes when they are synchronized, following the
principle of first request first synchronization to ensure the stability of the nodes while providing
efficient services to the outside world. When some nodes have already synchronized to the block,
they will also broadcast to other nodes, so that other nodes can share their resources as well.

3.8 Address Private Key Management Mechanism-My Secret

We have redesigned the management mechanism of address private key, which we call My Secret.
The private key is the bottom line to ensure the rights and equity of users. In most blockchains,
each user has a pair of public key and private key, and because the private key string is irregular
and also long, resulting in almost no user will directly remember this private key, more often it is
saved to an album in the form of a picture QR code, or directly by a third-party wallet service
provider for unified storage, which can obtain some direct benefits.
(1) It is convenient for users to transfer and keep it in the form of QR code.
(2) The advantage of unified storage by the third-party wallet service provider is that the user only
needs to remember the password set by the service provider. Along with these benefits, there are
some hidden dangers:
a. Images can be easily lost.
b. Third-party service providers may face problems such as security loopholes, closing down, and
supervisory theft, which essentially exchange the credit of the wallet service provider for the
wallet key, defeating the original purpose of blockchain decentralization and de-credit
intermediation.
In order to provide convenient key management on the basis of key security, we designed
"MySecret", which uses a custom long secret message as a seed (it can be a favorite line, a song, a
poem), and then the key will be stored in the key. The key is encrypted and put into the on-chain
key safe. It solves a series of problems such as traditional cipher with few bits and low strength
that can be easily cracked, the original key characters are messy and meaningless and hard to
remember, and the third-party central custodian (such as blockchain.info) is unreliable, so that
users can really use keys safely and conveniently in a decentralized environment without using
other third parties.

3.9 Automatic Upgrade

In the era of Web 2.0, it is common for an application to be upgraded and updated due to certain
bugs or new features. Like all applications, blockchain also needs to be upgraded to keep up with
the times. However, blockchain upgrades are much more difficult than regular software upgrades:
a. Upgrading a traditional blockchain requires forking the network, such as Ethernet switching the
consensus mechanism from PoW to PoS, which can only be achieved through a hard fork.
b. At the same time, the upgrade work requires preparations ranging from months to years to
complete.

12

BIWMeta revolutionizes this process, enabling blockchains to be able to upgrade themselves
without the need for forked chains. These forkless upgrades are achieved through BIWMeta's
open and transparent on-chain governance in which everyone participates. With this feature,
BIWMeta enables projects to remain agile, adapting and evolving with technology. It also
significantly reduces the risks associated with a controversial hard fork.

3.10 Fork Merging

In the Bioclinic blockchain, when legitimate blocks with different hashes appear at the same
height, the blockchain will create a temporary fork, at which point the network is able to quickly
identify and perform a rollback merge based on consensus rules. The confirmed transactions in the
rolled-back blocks are also rebroadcast to the network. The block fork consensus rules follow the
block participation > accumulated fees in the block > block signature to select the block to be
applied. The participation is determined by the transactions confirmed in the block, and is
calculated as follows: changes in equity within the block * consensus equity weight + number of
transactions confirmed in the block * consensus transaction weight, where the consensus weight is
specified in the Genesis block.

3.11 Distributed Computing

With the development of the Internet era, the requirements for information technology are getting
higher and higher, and more and more scenarios require the use of computers for computing,
while the computing capacity of a single computer is always limited, in practical applications
often use the form of clusters for computing, but this often requires the institution or individual
building the cluster to have a certain initial economic strength, using economic strength to turn to
the scale of the cluster, thus improving the overall computing capacity But not all organizations
have a certain scale of economic strength at the beginning of the business, in addition even if a
certain scale of cluster computing capacity is built, but does not always need such a large
computing capacity, often in some sudden business only need a very high peak computing demand,
in most of the time are only low-load computing needs, so in the actual business scenario, build a
large-scale computing capacity Therefore, it is not a cost-effective solution to build large-scale
computing capacity to meet the occasional peak computing demand in real business scenarios.
Currently there are some solutions on the market to solve the problem, such as cloud computing,
the demand side can increase or decrease the cloud server at any time according to the business
and performance needs, this way to a certain extent to solve the problem of large initial investment,
performance can be flexibly configured, but still only simplifies the problem of building a
convenient and flexible computing capacity, and does not solve the problem of flexible allocation
of computing resources according to the demand for computing capacity. Then how to provide a
truly flexible allocation of computing resources without a one-time large-scale investment and
elastic computing resource allocation scheme has become an urgent problem to solve.
BIWMeta invents a blockchain-based distributed computing method, including computing task
definition, computing task distribution and computing task execution, where computing task
definition includes task information entry and processable task type registration, computing task
distribution includes data disassembly and node connection, computing task execution includes
task information acquisition and task execution, and the invention also discloses a The present
invention also discloses a blockchain-based distributed computing system, including a computing
task definition module, a computing task distribution module and a computing task execution
module, the computing task definition module is divided into a task information entry sub-module
and a processable task type registration sub-module, the computing task distribution module is
divided into a data disassembly sub-module and a node connection sub-module, the computing
task execution module is divided into a task information acquisition sub-module and a task
execution sub-module. The beneficial effect of the present invention is to realize decentralized
elastic distributed computing, which solves the problem of large-scale distributed computing and
waste of idle resources.

13

4. Consensus Protocol

4.1 Consensus Algorithm of BIWMeta

4.1.1 TPOW+DPOS

Consensus mechanism is the soul of blockchain, which is the necessary means for blockchain
network to reach agreement in a decentralized and distributed environment.

Advantages of current consensus mechanisms
(1) Proof-of-work mechanism POW
The node with the strongest arithmetic power hits the block, which can effectively increase the
cost of evil; the difficulty enhancement strategy reduces the probability of any multiple blocks on
the blockchain being rewritten at the same time by technical means to negligible.
(2) Proof-of-equity mechanism POS
The competition of playing blocks by the nodes with the largest equity can avoid the waste of
computing resources and make the cost of evil directly related to its equity, which reduces the
probability of evil to a certain extent by means of business.
(3) Byzantine fault tolerance mechanism PBIWM
By all nodes in the network to participate in voting, voting less than (N-1)/3 nodes opposed to
reach agreement and hit the block, this mechanism is practical, efficient, less waste of resources
and scalable.
As time goes by and the business diversifies deeper, these consensus mechanisms with obvious
advantages start to show symptoms of overwhelm and exhibit obvious drawbacks in specific
scenarios.

Problems of various current consensus mechanisms
(1) Wasted computational power
In the proof-of-work mechanism POW, only the nodes with the most computational power can hit
the blocks, which leads to a huge waste of computational power and prevents the general public
from truly participating in the consensus of the nodes.
(2) Concentration of equity to the top
In the proof-of-stake mechanism POS, the larger the stake is, the higher the probability of being
eligible to hit the block, and hitting the block means a reward, which leads to the mutual
promotion of "getting a reward to increase the probability of hitting the block" and "increasing the
probability of hitting the block to get more stake", resulting in small This leads to the
marginalization of the nodes with small equity and the loss of the right to participate in consensus.
(3) Low cost of mischief
In Byzantine fault-tolerant mechanism, since all nodes can participate in consensus voting, this
will lead to the weakening of the business properties represented by their votes, and a node
without equity will have almost no cost of evil in the consensus process.

Consensus mechanism specific to BIWMeta
We redesigned the participation-based TPOW (Transaction Proof of Work) + DPOS (Delegated
Proof of Stake)+ PBFT consensus mechanism.
We redesigned the TPOW+DPOS+PBFT consensus mechanism based on the degree of
participation, which not only inherits the business attributes of POS, the efficient attributes of
DPOS, and the full participation attributes of PBFT, for the sake of the sustainable development of
BIWMeta ecology, but also for the sake of higher reliability of BIWMeta data and effective
avoidance of the problems arising during the development of the existing consensus mechanism.
In addition to effectively inheriting the business properties of POS, the efficient properties of
DPOS, and the full participation properties of PBFT, it can also effectively avoid the problem of
low cost of collective evil by nodes with no equity and high equity, and also provides a basis for
The D-Wallet terminal to participate in consensus.

14

In this consensus mechanism, participating nodes not only need to provide proof of equity, but
also proof of participation, where The R-Node obtains participation by providing highly reliable
network performance, and The S-Node obtains participation by providing terminal services, and
each participating node's activity on the network increases its participation to a certain extent, and
the increase of participation is based on obtaining the service signature of the served This ensures
that participants of different dimensions can participate in the consensus and governance of the
network, thus effectively avoiding the shortcomings of the single-dimension consensus
mechanism.

TPOWConsensus Algorithm
TPOW (Transaction Proof of Work) refers to the proof of workload of a transaction. It means that
a transaction is on the chain, not with zero computational cost, and needs to be supported by a
certain amount of arithmetic power to be submitted to the chain. Usually, when we talk about
proof of work, we think of it as a big "power consumer", but in TPOW, this is not the case.
Generally, TPOW does not affect the daily on-chain transactions of ordinary users, but through the
configuration of parameters, its threshold is often dynamically deployed based on the number of
equity in the address and the number of activities in a period of time. The more equity an address
has, the higher the trigger threshold for TPOW.
Its presence will only have an impact on hackers who want to launch attacks on the blockchain in
a short period of time, solving unlimited low-cost DDOS attacks. Ordinary users more often than
not do not really need to provide the arithmetic example, but only need to wait online to the
TPOW algorithm in the time parameter as time passes and slowly back down the difficulty can be.
So also indirectly will allow users to have more online time proof to contribute part of the
distributed network, making normal use and a large contribution to the ecology of the user to
obtain governance priority.

4.1.2 Miner Protocol

4.1.2.1 Authorized Creation Protocol

Authorized Genesis Protocol, refers to the protocol corresponding to the Genesis block, which is
signed and generated by the generator of the Genesis block. The authorization protocol is mainly
to mark the capabilities that this node can obtain, which covers the maximum number of nodes,
the maximum TPS, the range of events allowed to be processed, and the assets allowed to be
circulated. The authorization is not verified when the block is synchronized, while it is validated
when the block is forged. It also means that this authorization file will be able to customize the
capabilities of the nodes. In the public chain, we provide full authorization for all nodes by
default.
4.1.2.2 Genesis Basic Protocol

Genesis basic protocol refers to the basic information of this chain, including chain MAGIC, chain
name, master equity name, Genesis address, etc.
4.1.2.3 Consensus Incentive Agreement

The Consensus Incentive Agreement, refers to the revenue generated by each block forging as the
blockchain advances and the distribution rules for voting and forging, which we define in the
Genesis block. In BIWMeta, the block forging reward is 800.
4.1.2.4 Block Forging Agreement

The block forging protocol refers to the forging interval and the number of blocks per round.
biwm has a forging interval of 15 seconds and a round of 50 blocks. The last block of each round
is the end-of-round block. In the end-of-round block, we calculate the required checkpoint data to
be generated for each round by the algorithm.
4.1.2.5 Contract Execution Protocol

The contract execution protocol means that some of the event parameters in this chain will be
determined by the protocol of the creation block. For example, the minimum equity value required

15

to issue assets, register the chain, the maximum number of bonus events that can be issued, and
other configurations.
4.1.2.6 Event Processing Protocol

The event processing protocol refers to the protocol about the processing capability of events in
this chain, including the maximum validity, maximum tps, maximum size of a single event, and
the minimum handling fee consumed per byte.
4.1.2.7 Proof of Algorithm Protocol

The proof-of-algorithm protocol specifies the rules for the TPOW parameters of the biochain
forest. The higher the difficulty of the TPOW, the more difficult the events processed per unit
block. The difficulty of TPOW can be reduced by increasing the address participation, thus
processing more events per unit block.
4.1.2.8 Network Communication Protocol

The blockchain consensus port for this chain is defined here. Other ports are configured in the
configuration file.

4.2 Block Forger (Miner Node) Rotation

4.2.1 Multi-Node, Multi-Process Block-Generating Method

We have improved the mechanism for competing to hit blocks, which we call it - CABP
(Competitive Accounting Based on Participation based competitive bookkeeping mechanism).
Blocks are the basic units that make up blockchain data, and the block generation strategy will
directly affect the performance of the blockchain network and the rights and equity of
participating nodes. Traditional blockchain's block hitting blocks have some characteristics.
a. Participating nodes with complete data can only participate in block hitting.
b. The participating node with the most arithmetic power or the highest equity can only participate
in the block hitting.
c. In most consensus mechanisms, only the block hitting can gain.

These features pose some immediate problems.
a. Solving the data reliability problem in terms of data integrity also constrains the participation of
lightweight nodes.
b. The use of arithmetic power and equity alone as the basis for hitting blocks will lead to
long-term development hindrance, and there will be significant resource concentration and
stratification.
c. The fact that the only way to gain revenue is to participate in blocking will discourage nodes
from contributing to participation in other ways.

By summarizing the problems caused by the traditional blocking method, we have improved the
mechanism of blocking based on a longer-term consideration, in which arithmetic power and
equity are no longer the only criteria for judging, and we have introduced more dimensions, such
as stability, activity and transaction volume, so that all types of participants can participate in the
blocking process, which will facilitate BIWMeta to attract all kinds of players and thus enrich the
participant ecology. We have improved the mechanism of playing block rewards, we call it -
BPIM (Based on Participation Incentive Mechanism).
Rewards are necessary to sustain the blockchain network. The science of reward mechanism
design will promote the prosperity of the blockchain network and in turn will constrain the
development of the blockchain network. There are roughly two ways of rewarding in traditional
blockchain networks:
a. Receiving block rewards by competing to hit blocks.
b. Receiving transaction fees by participating in transactions.

These two ways are simple in logic and easy to implement, but have some problems in later
development:

16

a. Participating nodes with low competitive ability cannot get block rewards, which may be unfair
to participating nodes that have contributed other participation.
b. Transactions by fees will bring about fee discrimination, and the hitting block nodes may
prioritize transactions with high fees in order to ensure their own revenue.

In order to solve the problems caused by the traditional reward mechanism, BIWMeta introduces a
multi-dimensional reward mechanism, we design The R-Node (real-time node), The S-Node
(service node) and The D-Wallet (distributed wallet). The R-Node and The S-Node can switch
between each other or work simultaneously according to the network environment or participants'
wishes, so that contributors of different dimensions can be rewarded. The R-Node and The
S-Node can switch between each other or work simultaneously depending on the network
environment or participants' wishes, allowing contributors of different dimensions of participation
to be rewarded.
In the reward distribution, both the rewards earned through equity and the participation provided
will be rewarded and distributed when the block is played (the block will also be distributed when
it contains a fee). Each service node will increase the weight of the service node to obtain the
reward, so as to encourage the access of service nodes when there are few service nodes, and
encourage real-time nodes to provide more efficient service nodes when there are enough service
nodes, thus dynamically balancing the BIWMeta Biochain Forest network from multiple
dimensions through a multi-dimensional reward mechanism.

Block forging code example (partial):
Forge block (forger public-private key pair, timestamp, previous block information) {
// Generate basic information about this block
const newBlock = { height, timestamp, previous block partial information}
// trigger multi-process transaction processing, and place the transaction in the block
// Verify each transaction, and sign it, and finally generate the block signature.
// Block and transaction are stored and broadcast to other nodes.
}

4.2.2 Block Forger Election Algorithm

Block forgers, those nodes in the BIWMeta network that are responsible for collecting event
information and packing it into blocks (i.e. miners). In addition to having the characteristics of a
normal node, a block forger is responsible for:
a. Collecting events in the network.
b. Validating events and packing them into blocks.
c. Broadcast the block to other nodes and add the block to their own local block chain after
passing the validation.

In the BIWMeta network, there are 50 block forgers in each round, and the BIWMeta block
forgers are selected based on a combination of parameters such as the number of votes received by
the trustees and their online rate.

The process involves three main parts in the generation of block forgers:
a. Nodes participate in the campaign
a) Becoming a trustee
b) Opening to receive votes and block forging

b. Address accounts holding equity vote on trustees

c. Becoming a forger
a) Enter the candidate zone
b) Become a Forger if the campaign is successful

17

4.2.2.1 Becoming a Trustee

In order to improve consensus efficiency, in the BIWMeta blockchain ecosystem, address
accounts can apply to become trustees as long as they hold equity in the main chain. All address
accounts can vote for the trustees who have opened to receive votes, and the system will elect 50
trustees from them according to certain algorithmic rules. These 50 trustees, or block forgers, will
be responsible for forging the next round of 50 blocks.
In the BIWMeta ecology, there are two main types of trustees as follows:
a. Ordinary trustees: Ordinary address accounts become trustees by application.
b. Genesis Trustees: Address trustees bound to the Genesis block, currently there are 100 Genesis
Trustees.

On-chain rules
a. Registering as a trustee is an event that requires payment of a certain on-chain fee, so only
accounts holding equity in the main chain can apply to become trustees.
b. By default, a maximum of 10 "registered trustee" events are confirmed in each round; if there
are more than 10 "registered trustee" events in that round, the events after the 10 confirmed events
will be queued until the next round block forging begins before they can be confirmed.
c. Only when a node becomes a trustee can it enter the candidate zone, so that it has the chance to
be selected and become a forger.
d. Support a node to bind multiple trustees at the same time.

4.2.2.2 Entering the Candidate zone

The nodes on the chain vote for the trustees involved in the election by participating in voting
(automatic and manual voting) with the votes obtained in their hands. The bottom layer will count
all the trustees that were voted in this round at the end of the block of this round. Those Trustees
who have been voted for and recommended will enter the Candidate Zone, and the system will
select the 50 Block Forgers for the next round from the Candidate Zone according to the election
rules of the bottom tier (see "Becoming a Forger" section below).
How to improve the probability of entering the candidate zone?
a. Increase the online rate
b. Increase the number of blocks forged
c. Increase the number of packaged deals
d. Increase the percentage of votes received
e. Re-register as a new trustee

4.2.2.3 Becoming a Forger

Campaign Consensus
a. Only trustees (hereafter called candidates) who enter the candidate zone may be selected to
become forgers for the next round of blocks.
b. The system will select 50 from the candidates according to the established consensus of the
bottom layer as the block forgers for the next round.
c. The underlying rules, which depend mainly on the following two parameters:
a) Number of votes received: i.e., the number of votes received by the candidates in the current
round of voting.
b) Online rate: online rate = number of forged blocks / (number of forged blocks + number of
drops); once a node has had one drop, the online rate will not return to 100%, but as the number of
forged blocks keeps increasing, its online rate can be infinitely close to 100%.

How to increase the online rate
a. Reduce the number of dropouts: Try to avoid being selected to forge a block when the node is in
the following states: not finished synchronizing, the node is in the upgrade period, the node itself
is not ready. If a node is found to be in one of the above states, the trustee can turn off receiving
votes by triggering a "reject vote" event. After the "reject vote" event takes effect, the node bound
trustee will no longer be voted, and its probability of being selected will be greatly reduced.

18

b. Increase the number of forged blocks: Nodes should participate in block forging as much as
possible to get more forged blocks. Once the number of blocks forged by that node is much larger
than its dropouts, then its online rate will remain high, even infinitely close to 100%.

Initial Forger
The BIWMeta initial forgers (i.e., the block forgers in the first round) are elected from the 100
Genesis trustees according to the underlying campaign consensus (as above). Each subsequent
round of block forgers will be elected through the campaign process described above.

Example trustee consensus code:
Trustee election (current block) {
// 1 Take the forger chosen at the end of the previous round
// 2 Elect a certain address among these forgers by using the signature and timestamp of the
current block as seed
// 3 If that address drops, record it and re-pick the address until they all drop, then pick from the
actual forgers of the previous round, and so on.
}

4.2.3 Distributed Transaction Synchronization

Blockchain is an indispensable and important infrastructure for the digital world in the future
meta-universe, and on top of this infrastructure, it will carry vertical applications of hundreds of
lines and thousands of industries, and many applications will bring massive users, and massive
users need the support of blockchain to provide massive transaction processing capacity. The
special chain-like block structure of blockchain determines that only one block can become a valid
block at the same time, and the block contains the transactions within this unit time, which also
constrains that only one batch of transactions can be processed at the same time, which seriously
constrains the improvement of blockchain performance. Currently the industry has adopted some
methods to solve this problem, such as removing the block structure, but removing the block
structure will lead to a significant decrease in the reliability of transactions, which is a huge cost
cost. How to break through the performance constraints caused by the chained block structure
without reducing the reliability of transactions has become an urgent problem to be solved.
BIWMeta pioneered a method for synchronous processing of distributed transactions in
blockchain, which makes it possible to solve this problem: obtain the list of nodes that have
completed consensus and count the protocol version with the maximum convention, calculate the
transaction range of participating second consensus nodes and send it, check the consensus status,
the applicable range of transactions, and Byzantine consistency issues, and when the nodes receive
the transactions check the transaction range and out block time, place the result of transaction
processing into a new block, wait until the node's block time to announce the result to the public,
and complete the parallel processing of the transaction. We also provide a distributed transaction
synchronization processing system for blockchain, including a second consensus manager,
transaction manager, transaction manager, block forger, etc. The components are connected
sequentially, which solves the problem of blockchain processing transactions in parallel by
multiple nodes (non-cooperative block-beating nodes) at the same time, thus improving
performance.

5. Programmable Contracts

5.1 Smart Contracts

BIWMeta builds a method to create smart contracts directly from mobile.
Both parties to a transaction freeze part of their assets to a smart contract in the form of a smart
contract, which is submitted to the blockchain for network-wide deposition, and the contract takes
effect when a network-wide consensus is reached. After the contract takes effect, both parties only
need to sign a supplemental distribution agreement to the frozen agreement for transfers within

19

this asset amount. Since the total amount has not changed at this time, the supplemental agreement
only needs to be signed and acknowledged by both parties and no longer needs to wait for
network-wide confirmation. This method increases the transfer speed between two accounts that
transfer frequently, except for the first freeze and the last unfreeze which are normal speed, the
transfer speed will be instantaneous at all other times, and the fee is very low.
Smart contract application on mobile blockchain has both high efficiency, security, simplicity and
economic practicality, which is more in line with the requirements of future scale landing
application.
BIWMeta's smart contracts are the next generation of blockchain smart contracts, unlike the
current ones that rely on the execution of virtual machines in nodes, and thus derive various
counter-intuitive restrictions to barely maintain the viability of the solution; and run one code
repeatedly on each node, which is a backward design for today's energy-constrained reality.
distributed network that relies on on-chain communication for distributed execution of smart
contracts, ultimately storing on the chain only the results that are confirmed by multiple signatures
and the correct ledger.
Essentially, BIWMeta's smart contracts do not define a traditional contract virtual machine, but
rather a multi-signature list of variables: it is also the result of the execution of the contract that is
agreed to by all addresses involved in the contract, and the total book changes without wrong
accounting. This means that the blockchain does not need to execute the contract repeatedly when
it is synchronized, but only needs to make sure that all involved addresses agree to the contract
result. This does not even require relying on code to execute the contract; it is also feasible for
real-life population to agree on the contract outcome and upload the result to the chain. This opens
up more possibilities for blockchain ledger operations.
It also means that any programming language can be used for contract development, and it is only
necessary to link the addresses involved in the contract based on a distributed network on the
chain, execute it according to its content and submit its result with a signature. The fundamental
reason why the current blockchain cannot adopt such a design is that BIWMeta deeply integrates
the distributed network into the blockchain, relying on the highly available distributed network to
get an off-chain that is on-chain effect. So we can distribute smart contracts to each node
(including mobile nodes) to execute their own part of the code separately, and finally aggregate.
In theory, this model of smart contract can be performed in any programming language, but it
involves the idempotence of the contract, in order to allow any node is able to verify its code
execution process. Therefore, our recommended programming language of choice is
Rust/Typescript. Rust is used because it can compile WASM small enough and high enough to
ensure that all nodes can verify the contract results idempotently. It can also be compiled to Native
for some high performance scenarios in environments where the conditions are met. This means
that any function and function available in the developer's programming language can be used,
and for the executor, it is just a matter of choosing a contract that meets their needs while picking
the one with better performance.
Let's take a specific scenario to describe how this contract solution differs from traditional
contracts: Suppose there is an "image data collection contract" that requires the collection of
photos from a defined number of geographic regions, and the finalist submission address gets the
reward. Then in the traditional blockchain, relying only on the contract code, it is impossible to
judge whether the photos meet the geographical requirements and quality requirements on the
chain; while in BIWMeta, after relying on the distributed network to collect the image data, the
decision maker uses his own key tools to review the image data locally and manually selects the
shortlisted photos, and finally the contract is finalized and uploaded to the chain. If the
contributors publish their own review criteria, then they can also let other addresses push each
other to review, and the contributors only need to pick the one they want in the end (similar to
separating the cake cutter from the cake picker), thus further ensuring fairness.

5.2 Digital Products (DP/NFT)

DP (Digital Products) is an acronym for a non-homogeneous digital asset type, which is a signed
proof of a digital product stored on the blockchain that is unique, tamper-evident, and
non-detachable.

20

BIWMeta provides a way to mark the ownership of digital products. Each circulation and change
of ownership of a DP work is recorded on the blockchain and a unique digital certificate is
generated, making it non-detachable, non-replicable and non-tamperable.
DP is of great significance for building metaverse due to its uniqueness, non-splittability,
non-tamperability and replication. It can be used to record and trade digital assets, such as digital
works, artworks, property certificates, tickets and game props. At the same time, DP changes the
traditional virtual goods trading model, users can directly produce and trade virtual goods as if
they were in the real world.
BIWMeta connects various assets in the real world with the digital world through DP,
continuously enriching the ecological variety of the metaverse, and thus continuously expanding
the imaginary boundaries of the metaverse.

5.3 DeFi Support

DeFi (Decentralized Finance) , a decentralized financial system created based on blockchain
technology and cryptocurrency, is decentralized, open and transparent, reliable, fair and secure. It
has been able to make possible the attribution, circulation, realization of value and authentication
of virtual identity in the meta-universe.
BIWMeta supports both various digital asset (Token) DeFi and digital product DeFi. DPFi is a
liquidity protocol for BIWMeta's digital product DP, which allows DP owners to obtain secured
equity loans from peer-to-peer liquidity providers in a fully de-trusted manner, increasing the
liquidity of the DP assets they own. DP liquidity providers use DPFi to earn attractive returns or
have the opportunity to acquire DPs at a price below their market value in the event of a loan
default.

6. Programmable Digital Asset Issuance

6.1 Destruction Issuance (Deflation Mechanism)

BIWMeta builds a method, system and apparatus for asset issuance based on blockchain token
destruction.

6.2 Decentralized Asset Exchange

Assets are an important part of production and life in social activities, which are both necessary
elements for production and important driving factors for social development, while their
circulation efficiency in society largely affects the forward rate of social development.
How to accelerate the circulation efficiency of assets to speed up the development of society is a
unanimous effort of the whole social activities of the relevant institutions and individuals.
In the traditional way, the circulation of assets often relies on a central authority, such as housing
agents, notaries, property management centers, intellectual property exchanges, etc. They act as
intermediaries to provide services for both sides of the circulation of assets, either by the
intermediaries to intervene in holding assets and funds to guarantee the transaction, or by the
intermediaries to witness the transaction, which to a certain extent alleviates the problem of asset
circulation, but does not well The lack of any kind of intermediary will largely lead to the failure
of asset circulation, and the simultaneous participation of intermediaries determines the
inefficiency of completing asset circulation; however, if we let the two sides deal directly, there is
a high probability of not reaching agreement because of the trust problem. Then, how to establish
a method of asset circulation that is trustworthy for both parties but not affected by the efficiency
of the third party becomes an urgent problem to be solved.
BIWMeta builds a decentralized asset exchange method, where the issuing party fills in the
information of the issuing entity and the issuing asset, the issuing party uses a digital certificate to
sign the transaction, submits the blockchain transaction to the blockchain and places the
transaction into the block; the participating party uses a private key to encrypt the identity feature

21

information and turns it into a blockchain transaction to complete the real name authentication;
when the blockchain extracts the information of the asset After the blockchain extracts the
information of the asset, the sender fills in the asset transfer information and uses the signature of
the sender to sign and send the blockchain transaction; the counterparty receives the blockchain
transaction, signs it and sends it to the blockchain for processing, and completes the asset
exchange by verifying the correctness of the transaction, which realizes the role of decentralized
and rapid flow of assets and solves the credit risk introduced by the intermediary and the problem
of inefficient asset circulation.

7. Chain Services

7.1 Chain Domain Name-LNS

In web 2.0, due to the disadvantages of a string of numeric IP addresses that are not easy to
remember and do not show the name and nature of the address organization, domain names were
designed and the DNS (Domain Name System) was used to map domain names and IP addresses
to each other, making it easier for people to access the Internet without having to remember the
number of IP addresses that can be read directly by machines. IP address number strings.
In the blockchain system, node IPs are also not easy to remember. Can we design a corresponding
chain domain name for each node on the blockchain, just like the domain name system?
Meanwhile, blockchain can solve the security and privacy problems of each website on web 2.0
Internet, so can we develop a new chain domain name system on blockchain to realize
decentralized and distributed access to websites on the chain?
BIWMeta has built a new distributed location name service LNS, which is called "Location Name
Service". Organizations/users can register or purchase LNS and create a corresponding DWeb site
for them, which can be easily accessed by people. The emergence of LNS location name service
builds a bridge between the complex computer language of blockchain and the common human
language, so that people can easily access the blockchain website by entering the name of a
person/organization + .com/cn/org, just like the Internet in the past.

7.2 DWeb

BIWMeta provides DWeb blockchain website construction for organizations and individuals using
a peer-to-peer protocol invented in-house. These DWeb sites can store web pages, images, media,
user data, etc. just like regular Web 2.0 sites.
In the Web 2.0 era, hosting a website was traditionally done by "servers", which could be
centralized vendor computers or cloud dedicated computers. to help DWeb sites online, and can
even be permanently open for favorite sites, permanently online.
Users can grab an LNS chain domain name at BIWMeta and create a corresponding DWeb site,
and then share the DWeb link with any other user.

7.3 Dual Offline Payment

The Internet has become an essential component of our modern daily life. What happens if, in
some special circumstances, the Internet is not available? We are likely to be unable to order
takeout, call a taxi, watch classroom videos, submit work, communicate with people, transact with
people, and so on. The inability to transact with people electronically almost prevents more than
80% of our daily activities. So is there an electronic payment method that can be used even when
the network is offline? At present, there are products such as the card-carrying coin purse launched
by UnionPay Card and the offline payment launched by Alipay WeChat, but these products still
require merchants to be online in order to use them, and it is still impossible for both parties to
make payments completely off the network. In the current era of advanced Internet, network
offline is still a frequent occurrence, such as on the plane, in the ocean region, in the deep forest,
power outage and disconnection, network blockage, fiber break, network congestion, etc., which

22

can lead to network unavailability, so how to provide payment service for both parties of the
transaction even when the network is completely offline has become an urgent problem to solve.

BIWMeta builds a blockchain-based offline transaction method, including a unilateral offline
transaction method and a bilateral offline transaction method. In the unilateral offline state, the
online party is allowed to submit a payment request for the offline party; in the bilateral offline
state, the payer issues an irrevocable, non-repudiation and non-forgeable payment voucher for the
payee, which is directly used by the payee as the basis of arrival, and the payee cashes the voucher
from the network when the network is restored.
BIWMeta's offline transaction system, including transaction manager, account synchronizer, and
voucher manager; it can provide good support for mobile terminal devices and provide application
layer services even if the network is unstable, realizing the role of making payments offline and
solving the problem of not being able to make payments in case of network disconnection.

7.4 On-chain Red Packet

Based on the natural attribute of "daily application" in mobile, BIWMeta equity bonus is an
important innovation of blockchain application on the ground, which is the starting point to help
users establish blockchain awareness. digital wallet or the change of book numbers on
Alipay/WeChat red envelopes is fundamentally different. At the same time, in the scenario of
physical assets on the chain, on-chain red envelopes can also send the digital assets corresponding
to the physical assets.

7.5 Service Market

In the service market, BioChainlin provides various valuable surfing market (Web Application)
and node application (Node Application) to provide comprehensive and diversified services for
developers, different types of nodes and users.
Users can visit equityed on-chain Web sites on the Surf Market, or select a favorite node (e.g.
EOW) in the node search result list, and then download and install it to use. Blockchain
application coders can also develop various DApps, DWeb and deploy smart contracts in the
"Developer Community". In the physical chain scenario, digital goods issuers can also display
their products, brands and after-sales services in the surfing market.

7.6 Shuttling the World

On BIWMeta, enterprises can customize and develop parallel chains according to their business
needs and application scenarios. For the business that does not need to be completely on the chain,
enterprises can also selectively on the chain, independently develop DAPP or embedded
development on the main chain of BIWMeta. Each sub-chain on BIWMeta will interoperate with
other parallel chains and form a living biomass together. This group will continue to evolve and
iterate and update with the participation of developers and users all over the world to solve social
problems.

For enterprises, BIWMeta presents three main functions:
1) Empowering evolutionary chain development
Through the authorization of BIWMeta, enterprises can customize the development of license
chains and parallel public chains according to their business needs and application scenarios.
2) Physical assets on the chain and digital assets (including digital goods, digital consumption
points, etc.) issuance
BIWMeta provides "digital assets anchored to physical objects, and the digital twin on the chain
replaces the physical objects in the chain circulation", as well as digital assets issuance and
management services for physical enterprises and institutions.
3) On-chain application development and smart contract deployment
Developers can develop various DApps, DWebs and deploy smart contracts on BIWMeta to build
a credible foundation platform together.

23

8. Interface Documentation

8.1 Interface Incoming Parameters and Return Parameters

Description

(1) The full name of the interface is the function name of the interface, which is also the full name
when called from the command line.
(2) Interface abbreviation is the abbreviated name when the command line call.
(3) Callable method refers to the ways in which the interface is allowed to be called.
(4) The call method is used when http is used, and the string is added in front of /api when
websocket is used.
(5) The request and return parameters are described in the syntax of typescript, or in <type
definition> if designed for type definition.

8.1.1 Example of Passing/Entering Parameters

The following is a description of the "Get Specified Account" interface for passing and entering
parameters.
- Full name of the interface: getAccountInfoAndAssets
- Interface abbreviation: ga
- Callable methods: Http, Websocket, command line, Grpc
- Call method: post
- Interface url address: /api/basic/getAccountInfoAndAssets
- Request parameters

interface GetAccountInfoAndAssets { /**account address */

address: string;}

- Return parameters

interface GetAccountInfoAndAssets extends RespCommonParam {

result: MemInfoModel.AccountInfoAndAsset;}

8.2 Basic Interface

This section will briefly introduce the BIWMeta basic interface parameters, for more details on
the use of each parameter and the re-referencing content, please go to the BIWMeta developer
community.

8.2.1 Getting BIWVersion Number

- Full name of the interface: getBIWVersion
- Interface abbreviation: v
- Callable methods: Http, Websocket, command line
- Call method: get
- Interface url address: /api/basic/getBIWVersion
- Request parameters: None

24

8.2.2 Getting the Current Latest Block of the Local Node

- Full name of the interface: getLastBlock
- Interface abbreviation: glb
- Callable methods: Http,Websocket,Command Line,Grpc
- Call method: get
- Interface url address: /api/basic/getLastBlock
- Request parameters: None

8.2.3 Getting the Specified Block

- Full name of the interface: getBlock
- Interface abbreviation: gb
- Callable methods: Http, Websocket, command line, Grpc
- Call method: post
- Interface url address: /api/basic/getBlock
- Request parameters.

interface GetBlock {/**block signature */

signature?: string;/**block height */

height?: number;/**view the page (20 records per page) */

page?: number;}

8.2.4 Getting the Specified Event

- Full name of the interface: getTransactions
- Interface abbreviation: gt
- Callable methods: Http, Websocket, command line, Grpc
- Call method: post
- Interface url address: /api/basic/getTransactions
- Request parameters.

interface GetTransactions {/**event id */

signature?: string;/**event block height */

height?: number;/**The minimum height of the block the event belongs to, can be used with

maxHeight to query events in a block. */

minHeight?: number;/**the highest height of the block the event belongs to, can be used with

minHeight to query the events of a period */

maxHeight?: number;/**event initiator */

senderId?: string;/**event recipient */

recipientId?: string;/**Event type, if not passed in then event type is not filtered, please refer to

*/type?: string[];/**The index value of the event, you can query the event based on the index

25

value of the event. The index value may be a value such as assetType or signature or username,

and it is recommended to use it in parallel with other conditions to find precisely. */

storageValue?: string;/**View the page (20 records per page) */

page?: number;}

8.2.5 Getting the Last Transaction of an Account

- Full name of the interface: getAccountLastTransaction
- Interface abbreviation: None
- Callable mode: Http,Websocket
- Call method: post
- Interface url address: /api/basic/getAccountLastTransaction
- Description: This interface is used to get the approximate balance of the specified address.
According to the return parameter transactionAssetChanges of the accountType to get the
assetBalance as the balance
- Request parameters.

interface GetAccountInfoAndAssets {/**account address */

address: string;/**asset type */

assetType: string;}

8.2.6 Creating an Account

- Full name of the interface: createAccount
- Interface abbreviation: ca
- Callable methods: Http, Websocket, command line, Grpc
- Call method: post
- interface url address: /api/basic/createAccount
- request parameters.

interface CreateAccount {/**account key */

secret: string;}

8.2.7 Getting Node Status

- Full name of the interface: getBlockChainStatus
- Interface abbreviation: gbc
- Callable methods: Http, Websocket, command line, Grpc
- Call method: get
- Interface url address: /api/basic/getBlockChainStatus
- Request parameters: None

26

8.2.8 Getting the Last Transaction of the Account According to the

Transaction Type

- Full name of the interface: getAccountLastTypeTransaction
- Interface abbreviation: galtt
- Callable methods: Http, Websocket, command line
- Call method: post
- Interface url address: /api/basic/getAccountLastTypeTransaction
- Request parameters.

interface GetAccountLastTypeTransaction{/**account address */

address: string;/**transaction type */

transactionType: string;}

8.2.9 Getting the Event Type

- Full name of the interface: getTransactionType
- Interface abbreviation: none
- Callable mode: Http,Websocket
- Call method: post
- Interface url address: /api/basic/getTransactionType
- Request parameters.

interface GetTransactionType{/**event base type */

baseType: {

//equity transfer

TRANSFER_ASSET = "AST-01",

//secondary password

SIGNATURE = "BSE-01",

//register forger

DELEGATE = "BSE-02",

//govern voting

VOTE = "BSE-03",

//set username

USERNAME = "BSE-04",

//start receiving votes

ACCEPT_VOTE = "BSE-05",

//stop receiving tickets

27

REJECT_VOTE = "BSE-06",

//create DAPPID

DAPP = "WOD-00",

//DAPPID payment

DAPP_PURCHASING = "WOD-01",

//data storage certificate

MARK = "EXT-00",

//create equity

ISSUE_ASSET = "AST-00",

//destroy equity

DESTORY_ASSET = "AST-02",

//initiate a gift of equity

GIFT_ASSET = "AST-03",

//accepting a gift of equity

GRAB_ASSET = "AST-04"};}

8.3 Event Class Interface Usage Description

8.3.1 Transfer Events

8.3.1.1 Creating a Transfer Event

- Full name of the interface: trTransferAsset
- Callable methods: Http, Websocket, command line
- Call method: post
- Interface url address: /api/transaction/trTransferAsset
- Request parameters.

interface TrTransferAsset extends TrCommonParam {/**Number of transferred equitys, 0-9 and

without decimal point, must be greater than 0 */

amount: string;/**The type of equity to be transferred, in uppercase letters, 3-5 characters */

assetType?: string;/**The name of the chain to which the equity is transferred, in lowercase letters,

3-8 characters */

sourceChainName?: string;/**Network identifier of the chain to which the equity is transferred, in

uppercase letters or numbers, 5 characters, last bit is a check digit */

28

sourceChainMagic?: string;/**The address of the receiving account of the event, base58 encoded

hexadecimal string */

recipientId: string;}

8.3.1.2 Creating a Transfer Event (with Security Key)

- Full name of the interface: trTransferAssetWithSign
- Callable methods: Http, Websocket, command line
- Call method: post
- interface url address: /api/transaction/trTransferAssetWithSign
- Request parameters.

interface TrTransferAssetWithSign {/**buffer generated by event body without signature,

generated by TrTransferAsset */

buffer: string;/**event signature */

signature: string;}

8.3.1.3 Sending a Transfer Event

- Full name of the interface: transferAsset
- Callable methods: Http, Websocket, command line
- Call method: post
- Interface url address: /api/transaction/send/transferAsset
- Request parameters.

interface SendTrCommonParam {/**Buffer to be signed, converted to base64 string */

buffer: Buffer;/**signature of the transaction */

signature: string;/**the security signature of the transaction */

signSignature?: string;

8.3.2 Setting Up a Secure Password Event

8.3.2.1 Creating a Set-Security-Password Event

- Full name of the interface: trSignature
- Callable methods: Http, Websocket, command line
- Call method: post
- Interface url address: /api/transaction/trSignature
- Request parameters.

interface TrSignature extends TrCommonParam {/**new security password */

newSecondSecret: string;}

29

8.3.2.2 Creating a Set-Username Event (with Security Key)

- Full name of the interface: trSignatureWithSign
- Callable methods: Http, Websocket, command line
- call method: post
- interface url address: /api/transaction/trSignatureWithSign
- Request parameters.

interface TrSignatureWithSign {/**buffer generated by event body without signature, generated

by trSignature */

buffer: string;/**event signature */

signature: string;}

8.3.2.3 Sending a Set-Security-Password Event

- Full name of the interface: signature
- Callable methods: Http, Websocket, command line
- Call method: post
- Interface url address: /api/transaction/send/trSignature
- Request parameters.

interface SendTrCommonParam {/**Buffer to be signed, converted to base64 string */

buffer: Buffer;/ */

buffer: Buffer;/**signature of the transaction */

signature: string;

/**the security signature of the transaction */

signSignature?: string;}

8.3.3 Setting the User Name Event

8.3.3.1 Creating a Set-Username Event

- Full name of the interface: trUsername
- Callable methods: Http, Websocket, command line
- Call method: post
- Interface url address: /api/transaction/trUsername
- Request parameters.

interface TrUsername extends TrCommonParam {/**username string, upper and lower case letters,

numbers, underscores, 1-20 characters, cannot contain the name of the current chain */

alias: string;}

30

8.3.3.2 Creating a Set-Username Event (with Security Key)

- Full name of the interface: trUsernameWithSign
- Callable methods: Http, Websocket, command line
- Call method: post
- interface url address: /api/transaction/trUsernameWithSign
- Request parameters.

interface TrUsernameWithSign {/**buffer generated by event body without signature, generated

by trUsername */

buffer: string;/**event signature */

signature: string;}

8.3.3.3 Sending a Set-Username Event

- Full name of the interface: username
- Callable methods: Http, Websocket, command line
- Call method: post
- Interface url address: /api/transaction/send/username
- Request parameters.

interface SendTrCommonParam {/**buffer to be signed, converted to base64 string */

buffer: Buffer;/**signature of the transaction */

signature: string;

/**the security signature of the transaction */

signSignature?: string;}

8.3.4 Registered Trustee Events

8.3.4.1 Creating a Registered Trustee Event

- Full name of the interface: trDelegate
- Callable methods: Http, Websocket, command line
- Call method: post
- Interface url address: /api/transaction/trDelegate
- Request parameters.

interface TrDelegate extends TrCommonParam {}

8.3.4.2 Creating a Registered Trustee Event (with Security Key)

- Full name of the interface: trDelegateWithSign
- Callable methods: Http, Websocket, command line
- Call method: post
- Interface url address: /api/transaction/trDelegateWithSign

31

- Request parameters.

interface TrDelegateWithSign {/**buffer generated by the event body without signature,

generated by trDelegate */

buffer: string;/**event signature */

signature: string;}

8.3.4.3 Sending a Registered Trustee Event

- Full name of the interface: delegate
- Callable methods: Http, Websocket, command line
- Call method: post
- Interface url address: /api/transaction/send/delegate
- Request parameters.

interface SendTrCommonParam {/**buffer to be signed, converted to base64 string */

buffer: Buffer;/**signature of the transaction */

signature: string;

/**signature of the transaction */

signSignature?: string;}

8.3.5 Receiving Polling Events

8.3.5.1 Creating a Receive-Vote Event

- Full name of the interface: trAcceptVote
- Callable methods: Http, Websocket, command line
- Call method: post
- Interface url address: /api/transaction/trAcceptVote
- Request parameters.

interface TrAcceptVote extends TrCommonParam {}

8.3.5.2 Creating AReceive-Vote Event (with Security Key)

- Full name of the interface: trAcceptVoteWithSign
- Callable methods: Http, Websocket, command line
- Call method: post
- Interface url address: /api/transaction/trAcceptVoteWithSign
- Request parameters.

interface TrAcceptVoteWithSign {/**buffer generated by event body without signature, generated

by trAcceptVote */

buffer: string;/ **event signature */

32

signature: string;}

8.3.5.3 Sending and Receiving Vote Events

- Full name of the interface: acceptVote
- Callable methods: Http, Websocket, command line
- Call method: post
- Interface url address: /api/transaction/send/acceptVote
- Request parameters.

interface SendTrCommonParam {/**Convert the buffer that needs a signature into a base64 string.

*/

buffer: Buffer;/**signature of the transaction */

signature: string;

/**the security signature of the transaction */

signSignature?: string;}

8.3.6 Rejecting Votes

8.3.6.1 Creating AReject-Vote Event

- Full name of the interface: trRejectVote
- Callable methods: Http, Websocket, command line
- Call method: post
- Interface url address: /api/transaction/trRejectVote
- Request parameters.

interface TrRejectVote extends TrCommonParam {}

8.3.6.2 Creating a Reject-Vote Event (with Security Key)

- Full name of the interface: trRejectVoteWithSign
- Callable methods: Http, Websocket, command line
- call method: post
- interface url address: /api/transaction/trRejectVoteWithSign
- Request parameters.

interface TrRejectVoteWithSign {/**buffer generated from event body without signature,

generated by trRejectVote */

buffer: string;/**event signature */

signature: string;}

33

8.3.6.3 Sending a Reject-Vote Event

- Full name of the interface: rejectVote
- Callable methods: Http, Websocket, command line
- Call method: post
- Interface url address: /api/transaction/send/rejectVote
- Request parameters.

interface SendTrCommonParam {/**Convert the buffer that needs a signature into a base64 string.

*/

buffer: Buffer;/**signature of the transaction */

signature: string;

/**the security signature of the transaction */

signSignature?: string;}

8.3.7 Polling Events

8.3.7.1 Creating a Voting Event

- Full name of the interface: trVote
- Callable methods: Http, Websocket, command line
- Call method: post
- Interface url address: /api/transaction/trVote
- Request parameters.

interface TrVote extends TrCommonParam {/**the number of equity cast, 0-9 and without

decimal points, 0 allowed */

equity: string;/**the address of the receiving account for the event, base58 encoded hexadecimal

string */

recipientId: string;}

8.3.7.2 Creating a Voting Event (with Security Key)

- Full name of the interface: trVoteWithSign
- Callable methods: Http, Websocket, command line
- Call method: post
- interface url address: /api/transaction/trVoteWithSign
- Request parameters.

interface TrVoteWithSign {/****buffer generated from event body without signature, generated

by trVote */

buffer: string;/**event signature */

signature: string;}

34

8.3.7.3 Sending and Receiving a Polling Event

- Full name of the interface: vote
- Callable methods: Http, Websocket, command line
- Call method: post
- Interface url address: /api/transaction/send/vote
- Request parameters.

interface SendTrCommonParam {/**Convert the buffer that needs a signature into a base64 string.

*/

buffer: Buffer;/**signature of the transaction */

signature: string;

/**the security signature of the transaction */

signSignature?: string;}

8.3.8 Publishing Dapp Events

8.3.8.1 Creating a Release-Dapp Event

- Full name of the interface: trDapp
- Callable methods: Http, Websocket, command line
- Call method: post
- Interface url address: /api/transaction/trDapp
- Request parameters.

interface TrDapp extends TrCommonParam {

/**dappid without checksum, upper case or numeric, 7 characters */

newDappid: string;

/**The type of the dappid, can only be 0 or 1, 0 means the dappid is paid, 1 means the dappid is

free. */

type: number;

/**The number of benefits needed to purchase the right to use the dappid (must be carried if the

dappid is a paid app, no need to carry it if it is a free app), 0-9 and no decimal points, must be

greater than 0. */

amount: string;

/**the recipient account address of the event, base58 encoded hexadecimal string */

recipientId?: string;}

8.3.8.2 Creating an Issue-Dapp Event (with Security Key)

- Full name of the interface: trDappWithSign
- Callable methods: Http, Websocket, command line

35

- Call method: post
- interface url address: /api/transaction/trDappWithSign
- Request parameters.

interface TrDappWithSign {

/**buffer generated from event body without signature, generated by trDapp */

buffer: string;

/**event signature */

signature: string;}

8.3.8.3 Sending an Issue-Dapp Event

- Full name of the interface: dapp
- Callable methods: Http, Websocket, command line
- Call method: post
- Interface url address: /api/transaction/send/dapp
- Request parameters.

interface SendTrCommonParam {

/**Convert the buffer that needs a signature into a base64 string. */

buffer: string;

/**event signature */

signature: string;

/**the security signature of the transaction */

signSignature?: string;}

8.3.9 Dapp Purchase Events

8.3.9.1 Creating a Purchase-Dapp Event

- Full name of the interface: trDappPurchasing
- Callable methods: Http, Websocket, command line
- Call method: post
- Interface url address: /api/transaction/trDappPurchasing
- Request parameters.

interface TrDappPurchasing extends TrCommonParam {

/**the recipient account address of the event, base58 encoded hexadecimal string */

recipientId: string;

/**the dappid to which the certificate belongs, an uppercase acquisition array, 8 characters */

dappid: string;

36

/**The type of the dappid, can only be 0 or 1, 0 means the dappid is a paid type, 1 means the

dappid is a free type. */

type: number;

/**the number of dappid purchase assets */

purchaseAsset: number;}

8.3.9.2 Creating a Purchase-Dapp Event (with Security Key)

- Full name of the interface: trDappPurchasingWithSign
- Callable methods: Http, Websocket, command line
- call method: post
- interface url address: /api/transaction/trDappPurchasingWithSign
- Request parameters.

interface TrDappPurchasingWithSign {

/**buffer generated from event body without signature, generated by trDappPurchasing */

buffer: string;

/**event signature */

signature: string;}

8.3.9.3 Sending a Purchase-Dapp Event

- Full name of the interface: dappPurchasing
- Callable methods: Http, Websocket, command line
- Call method: post
- Interface url address: /api/transaction/send/dappPurchasing
- Request parameters.

interface SendTrCommonParam {

/**Convert the buffer that needs a signature into a base64 string. */

buffer: string;

/**event signature */

signature: string;

/**the security signature of the transaction */

signSignature?: string;}

37

8.3.10 Depositing Events

8.3.10.1 Creating a Deposition Event

- Full name of the interface: trMark
- Callable methods: Http, Websocket, command line
- Call method: post
- Interface url address: /api/transaction/trMark
- Request parameters.

interface TrMark extends TrCommonParam {

/**the contents of the certificate, as an arbitrary string */

content: string;

/**the type of the certificate, as an arbitrary string, used to distinguish the certificate */

action: string;

/**the dappid of the certificate, in uppercase letters, 8 characters */

dappid: string;

/**The type of dappid, can only be 0 or 1. 0 means dappid is paid type. 1 means dappid is free

type. */

type: number;

/**number of equity spent to purchase dappid */

purchaseAsset?: number;}

8.3.10.2 Creating a Deposit Event (with Security Key)

- Full name of the interface: trMarkWithSign
- Callable methods: Http, Websocket, command line
- call method: post
- interface url address: /api/transaction/trMarkWithSign
- Request parameters.

interface TrMarkWithSign {

/**buffer generated from event body without signature, generated by trMark */

buffer: string;

/**event signature */

signature: string;}

8.3.10.3 Sending a Deposit Event

- Full name of the interface: mark
- Callable methods: Http, Websocket, command line

38

- Call method: post
- Interface url address: /api/transaction/send/mark
- Request parameters.

interface SendTrCommonParam {

/**Convert the buffer that needs a signature into a base64 string. */

buffer: string;

/**event signature */

signature: string;

/**the security signature of the transaction */

signSignature?: string;}

8.3.11 Equity Issuance Events

8.3.11.1 Creating an Equity Issuance Event

- Full name of the interface: trIssueAsset
- Callable methods: Http, Websocket, command line
- Call method: post
- Interface url address: /api/transaction/trIssueAsset
- Request parameters.

interface TrIssueAsset extends TrCommonParam{

/**the name of the issued asset, in uppercase letters, 3-5 characters */

assetType: string;

/**The total number of new equitys issued, the number of equitys consists of ten numbers

from 0-9, the number of equitys does not contain a decimal point and must be greater than 0. */

expectedIssuedAssets: string;

/**The address of the creation account of the new entitlement, base58 encoded hexadecimal

string, this address must be given to the originating account of this event to transfer the master

entitlement of this chain */

recipientId: string;}

8.3.11.2 Creating an Equity Issuance Event (with Security Key)

- Full name of the interface: trIssueAssetWithSign
- Callable methods: Http, Websocket, command line
- call method: post
- interface url address: /api/transaction/trIssueAssetWithSign
- Request parameters.

39

interface TrIssueAssetWithSign {

/**buffer generated from event body without signature, generated by trMark */

buffer: string;

/**event signature */

signature: string;}

8.3.11.3 Sending an Equity Issuance Event

- Full name of the interface: issueAsset
- Callable methods: Http, Websocket, command line
- Call method: post
- Interface url address: /api/transaction/send/issueAsset
- Request parameters.

interface SendTrCommonParam {

/**Convert the buffer that needs a signature into a base64 string. */

buffer: string;

/**event signature */

signature: string;

/**the security signature of the transaction */

signSignature?: string;}

8.3.12 Equity Destruction Events

8.3.12.1 Creating an Equity Destruction Event

- Interface full name: trDestroyAsset
- Callable methods: Http, Websocket, command line
- Call method: post
- Interface url address: /api/transaction/trDestroyAsset
- Request parameters.

interface TrDestroyAsset extends TrCommonParam{

/**The number of equitys to be destroyed, 0-9 and without decimal points, must be greater

than 0. */

amount: string;

/**the name of the destroyed asset, in uppercase letters, 3-5 characters */

assetType: string;

/**the issuing account address of the equity, base58 encoded hexadecimal string */

40

recipientId: string;}

8.3.12.2 Create an Equity Destruction Event (with Security Key)

- Full name of the interface: trDestroyAssetWithSign
- Callable methods: Http, Websocket, command line
- call method: post
- interface url address: /api/transaction/trDestroyAssetWithSign
- Request parameters.

interface TrDestroyAssetWithSign {

/**buffer generated from event body without signature, generated by trMark */

buffer: string;

/**event signature */

signature: string;}

8.3.12.3 Sending an Equity Destruction Event

- Interface full name: destroyAsset
- Callable methods: Http, Websocket, command line
- Call method: post
- Interface url address: /api/transaction/send/destroyAsset
- Request parameters.

interface SendTrCommonParam {

/**Convert the buffer that needs a signature into a base64 string. */

buffer: string;

/**event signature */

signature: string;

/**the security signature of the transaction */

signSignature?: string;}

8.3.13 Equity Exchange Events

8.3.13.1 Creating an Equity Exchange Event

- Full name of the interface: trToExchangeAsset
- Callable methods: Http, Websocket, command line
- Call method: post
- Interface url address: /api/transaction/trToExchangeAsset
- Request parameters.

41

interface TrToExchangeAsset extends TrCommonParam{

/**the network identifier of the source chain of equitys to be exchanged, consisting of upper

case letters or numbers, 5 characters, the last bit is a check digit */

toExchangeSource: string;

/**the network identifier of the equity source chain to be exchanged, in uppercase letters or

numbers, 5 characters, the last bit is a check digit */

beExchangeSource: string;

/**the name of the equity source chain to be exchanged, in lowercase letters, 3-8 digits */

toExchangeChainName: string;

/**the name of the source chain of the equity being exchanged, in lowercase letters, 3-8 bits

*/

beExchangeChainName: string;

/**the name of the equity to be exchanged, in uppercase, 3-5 characters */

toExchangeAsset: string;

/**the name of the equity being exchanged, in uppercase, 3-5 characters */

beExchangeAsset: string;

/**The number of equitys to be exchanged, 0-9 and without decimal points, must be greater

than 0. */

toExchangeNumber: string;

/**used as the denominator for the exchange ratio with equity, a positive integer.

exchangedEquity = exchangedEquity *exchange ratio */

prevWeight: string;

/**the numerator of the exchange ratio with equity, a positive integer. exchanged equity =

exchanged equity * exchange ratio */

nextWeight: string;

/**cryptographic key set: if the key is filled, the event receiving the equity exchange must

carry a signature pair generated by some key. */

ciphertexts?: string[];}

8.3.13.2 Creating an Equity Exchange Event (with Security Key)

- Full name of the interface: trToExchangeAsset
- Callable methods: Http, Websocket, command line
- call method: post

42

- interface url address: /api/transaction/trToExchangeAsset
- Request parameters.

interface TrToExchangeAssetWithSign {

/**buffer generated from event body without signature, generated by trMark */

buffer: string;

/**event signature */

signature: string;}

8.3.13.3 Sending an Equity Exchange Event

- Full name of the interface: trToExchangeAsset
- Callable methods: Http, Websocket, command line
- Call method: post
- Interface url address: /api/transaction/send/trToExchangeAsset
- Request parameters.

interface SendTrCommonParam {

/**Convert the buffer that needs a signature into a base64 string. */

buffer: string;

/**event signature */

signature: string;

/**the security signature of the transaction */

signSignature?: string;}

8.3.14 Acceptance of an Equity Exchange Event

8.3.14.1 Accepting an Equity Exchange Event

- Full name of the interface: trBeExchangeAsset
- Callable methods: Http, Websocket, command line
- Call method: post
- Interface url address: /api/transaction/trBeExchangeAsset
- Request parameters.

interface TrBeExchangeAsset extends TrCommonParam{

/**to event signature, 128-byte hexadecimal string */

transactionSignature: string;

/**To exchange the number of equitys, the number of equitys consists of ten numbers from

0-9, the number of equitys does not contain a decimal point and must be greater than 0. */

43

beExchangeNumber: string;

/**The number of exchanged equitys consists of ten numbers from 0-9. the number of

equitys does not contain a decimal point and must be greater than 0. */

toExchangeNumber: string;

/**encryption key: if the key is filled in for an equity exchange event, it must carry the key

specified for an equity exchange event to generate a key signature pair. */

ciphertext?: string;

/**to event's originating account address, base58 encoded hexadecimal string */

recipientId: string;}

8.3.14.2 Creating an Accept-Equity-Exchange Event (with Security Key)

- Full name of the interface: trBeExchangeAssetWithSign
- Callable methods: Http, Websocket, command line
- call method: post
- interface url address: /api/transaction/trBeExchangeAssetWithSign
- Request parameters.

interface TrBeExchangeAssetWithSign {

/**buffer generated from event body without signature, generated by trMark */

buffer: string;

/**event signature */

signature: string;}

8.3.14.3 Sending an Accept-Equity-Exchange Event

- Full name of the interface: destroyAsset
- Callable methods: Http, Websocket, command line
- Call method: post
- Interface url address: /api/transaction/send/destroyAsset
- Request parameters.

interface SendTrCommonParam {

/**Convert the buffer that needs a signature into a base64 string. */

buffer: string;

/**event signature */

signature: string;

/**the security signature of the transaction */

44

signSignature?: string;}

8.4 Instructions for Using the Node Management Interface

8.4.1 Safety Close of Node

- Full name of the interface: safetyClose
- Interface abbreviation: sfc
- Callable methods: Http, Websocket, command line, Grpc
- Call method: post
- Interface url address: /api/system/safetyClose
- Request parameters.

interface SafetyClose {/**verifyType: 001 node owner verification, 002 administrator verification

*/

verifyType: string;/**check value: depending on the authority of the node visitor, password check

for node owner and address check for administrator */

verifyKey: string;/**Whether the machine needs to be shut down: true means shutdown and false

means no shutdown */

isShutdown?: boolean;}

8.4.2 Setting Node Password

- Full name of the interface: setSystemKey
- Interface abbreviation: ssk
- Callable methods: Http, Websocket, command line, Grpc
- Call method: post
- Interface url address: /api/system/setSystemKey
- Request parameters.

interface SetSystemKey {/**old password for the node */

systemKeyOld: string;/**new password for the node */

systemKeyNew: string;/**Whether to decrypt the new password in asymmetric way (true: use

asymmetric way to decrypt, false: do not use asymmetric way to decrypt, plaintext transmission)

*/

newKeyDecryptEnable?: boolean;}

8.4.3 Verifying Node Password

- Full name of the interface: setSystemKey
- Interface abbreviation: ssk
- Callable methods: Http, Websocket, command line, Grpc
- Call method: post

45

- Interface url address: /api/system/setSystemKey
- Request parameters.

interface VerifySystemKey {/**node password */

systemKey: string;}

8.4.4 Adding Node Administrator

- Full name of the interface: addSystemAdmin
- Interface abbreviation: asa
- Callable methods: Http, Websocket, command line, Grpc
- Call method: post
- Interface url address: /api/system/addSystemAdmin
- Request parameters.

interface AddSystemAdmin {/**node password */

systemKey: string;/**node administrator address: please refer to <Node Administrator> for

administrator description */

systemAdminAddress: string;}

8.4.5 Getting Node Administrator

- Full name of the interface: getSystemAdmin
- Interface abbreviation: gsa
- Callable methods: Http, Websocket, Command Line, Grpc
- Call method: post
- Interface url address: /api/system/getSystemAdmin
- Request parameters.

interface GetSystemAdmin {/**node password */

systemKey: string;/**node administrator address: if there is an incoming address, then return the

information of that administrator address; if there is no incoming, then return the information of

all administrators. */

systemAdminAddress?: string;}

8.4.6 Verify Node Administrator

- Full name of the interface: verifySystemAdmin
- Interface abbreviation: vsa
- Callable methods: Http, Websocket, command line, Grpc
- Call method: post
- Interface url address: /api/system/verifySystemAdmin
- request parameters.

interface VerifySystemAdmin {/**encrypted administrator address */

46

cryptoAdminAddress: string;}

8.4.7 Deleting Node Administrator

- Full name of the interface: delSystemAdmin
- Interface abbreviation: dsa
- Callable methods: Http, Websocket, command line, Grpc
- Call method: post
- Interface url address: /api/system/delSystemAdmin
- Request parameters.

interface DelSystemAdmin {/**node password */

systemKey: string;/**node administrator address: please refer to <Node Administrator> for

administrator description */

systemAdminAddress: string;}

8.4.8 Resetting Node Administrator

- Full name of the interface: resetSystemAdmin
- Interface abbreviation: none
- Callable methods: Http,Websocket
- Call method: post
- Interface url address: /api/system/resetSystemAdmin
- Request parameters.

interface ResetSystemAdmin {/**node password */

systemKey: string;/**node administrator address: please refer to <Node Administrator> for

administrator description */

systemAdminAddresses: string[];}

8.4.9 Binding Node Accounts

- Full name of the interface: bindingAccount
- Interface abbreviation: ba
- Callable methods: Http, Websocket, command line, Grpc
- Call method: post
- Interface url address: /api/system/bindingAccount
- request parameters.

interface BindingAccount {/**node password */

systemKey: string;/**trustee private key after encryption */

cryptoSecret: string;/**encrypted Trustee Security Key */

secondSecret?: string;}

47

8.4.10 Getting Node Trustee

- Full name of the interface: getSystemDelegate
- Interface abbreviation: gsd
- Callable methods: Http, Websocket, command line, Grpc
- Call method: post
- Interface url address: /api/system/getSystemDelegate
- Request parameters.

interface GetSystemDelegate {/**node administrator address: please refer to <Node

Administrator> for administrator description */

verifyType: string;/**check value: depending on the authority of the node visitor, password check

for node owner and address check for administrator */

verifyKey: string;}

8.4.11 Querying All Forgers Registered by the Node

- Full name of the interface: getInjectGenerators
- Interface abbreviation: gsd
- Callable methods: Http,Websocket
- Call method: post
- Interface url address: /api/system/getInjectGenerators
- Request parameters.

interface GetInjectGenerators {/**node administrator address: please refer to <Node

Administrator> for administrator description */

verifyType: string;/**check value: depending on the authority of the node visitor, password check

for node owner and address check for administrator */

verifyKey: string;}

8.4.12 Query Details Of the Forger Registered by the Node

- Full name of the interface: getSystemDelegateDetail
- Interface abbreviation: none
- Callable methods: Http,Websocket
- Call method: post
- Interface url address: /api/system/getSystemDelegateDetail
- Request parameters: /api/system/getSystemDelegateDetail

interface GetSystemDelegateDetail {/**node administrator address: please refer to <Node

Administrator> for administrator description */

verifyType: string;/**check value: depending on the authority of the node visitor, password check

for node owner and address check for administrator */

verifyKey: string;/**受托人地址 */

48

address: string;}

8.4.13 Getting Node Details

- Full name of the interface: getSystemNodeInfo
- Interface abbreviation: none
- Callable methods: Http,Websocket
- Call method: post
- Interface url address: /api/system/getSystemNodeInfo
- Request parameters.

interface GetSystemNodeInfo {/**node administrator address: please refer to <Node

Administrator> for administrator description */

verifyType: string;/**check value: depending on the authority of the node visitor, password check

for node owner and address check for administrator */

verifyKey: string;}

8.4.14 Node Information Query

- Full name of the interface: miningMachineInfo
- Interface abbreviation: mmi
- Callable methods: Http, Websocket, command line, Grpc
- Call method: post
- Interface url address: /api/system/miningMachineInfo
- request parameters.

interface MiningMachineInfo {/**node administrator address: please refer to <Node

Administrator> for administrator description */

verifyType: string;/**check value: depending on the authority of the node visitor, password check

for node owner and address check for administrator */

verifyKey: string;}

8.4.15 Setting Node Configuration Information

- Full name of the interface: setSystemConfig
- Interface abbreviation: ssc
- Callable methods: Http, Websocket, command line, Grpc
- Call method: post
- Interface url address: /api/system/setSystemConfig
- Request parameters.

interface SetSystemConfig {/**node administrator address: please refer to <Node Administrator>

for administrator description */

verifyType: string;/**check value: depending on the authority of the node visitor, password check

for node owner and address check for administrator */

49

verifyKey: string;/**configuration information: all parameters here can be empty */

config: AllPartial<Config.ConfigRevisable>;}

8.4.16 Getting Node Configuration Information

- Full name of the interface: getSystemConfigInfoDetail
- Interface abbreviation: gsci
- Callable methods: Http, Websocket, command line, Grpc
- Call method: post
- Interface url address: /api/system/getSystemConfigInfoDetail
- Request parameters.

interface GetSystemConfigInfoDetail {/**node administrator address: please refer to <Node

Administrator> for administrator description */

verifyType: string;/**check value: depending on the authority of the node visitor, password check

for node owner and address check for administrator */

verifyKey: string;}

8.4.17 Getting Node State (Real-Time Information)

- Full name of the interface: getRuntimeState
- Interface abbreviation: grs
- Callable methods: Http, Websocket, command line, Grpc
- call method: post
- interface url address: /api/system/getRuntimeState
- Request parameters.

interface GetRuntimeState {/**node administrator address: please refer to <Node Administrator>

for administrator description */

verifyType: string;/**check value: depending on the authority of the node visitor, password check

for node owner and address check for administrator */

verifyKey: string;}

8.4.18 Getting NodeAccess Statistics

- Full name of the interface: getSystemMonitor
- Interface abbreviation: gsm
- Callable methods: Http, Websocket, command line, Grpc
- Call method: post
- Interface url address: /api/system/getSystemMonitor
- Request parameters.

interface GetSystemMonitor {/**node administrator address: please refer to <Node

Administrator> for administrator description */

50

verifyType: string;/**check value: depending on the authority of the node visitor, password check

for node owner and address check for administrator */

verifyKey: string;/**Specify the type of access, including the traffic of accessing IP, number of

times, number of accessing interfaces, number of blocks, event data, etc. */

monitorType?: string;/**The number of queries, for example, limit=10, means that 10 data can be

queried. */

limit?: number;/**Query start position, for example, offset = 0, means start querying from row 1.

*/

offset?: number;}

8.4.19 Getting Running Log Type of the Node

- Full name of the interface: getSystemLoggerType
- Interface abbreviation: glt
- Callable methods: Http, Websocket, command line, Grpc
- Call method: post
- Interface url address: /api/system/getSystemLoggerType
- Request parameters.

interface GetSystemLoggerType {/**node administrator address: please refer to <Node

Administrator> for administrator description */

verifyType: string;/**check value: depending on the authority of the node visitor, password check

for node owner and address check for administrator */

verifyKey: string;}

8.4.20 Getting the List of the Node Running Log

- Full name of the interface: getSystemLoggerList
- Interface abbreviation: gll
- Callable methods: Http, Websocket, command line, Grpc
- Call method: post
- Interface url address: /api/system/getSystemLoggerList
- Request parameters.

interface GetSystemLoggerList {/**node administrator address: please refer to <Node

Administrator> for administrator description */

verifyType: string;/**check value: depending on the authority of the node visitor, password check

for node owner and address check for administrator */

verifyKey: string;/**log type */

loggerType: string;}

51

8.4.21 Getting Contents of the Node Running Log

- Full name of the interface: getSystemLoggerDetail
- Interface abbreviation: gld
- Callable methods: Http, Websocket, command line, Grpc
- Call method: post
- Interface url address: /api/system/getSystemLoggerDetail
- Request parameters.

interface GetSystemLoggerDetail {/**node administrator address: please refer to <Node

Administrator> for administrator description */

verifyType: string;/**check value: depending on the authority of the node visitor, password check

for node owner and address check for administrator */

verifyKey: string;/**log file name */

loggerName: string;/**the number of queries: e.g. limit=10, means 10 data can be queried. */

limit?: number;/**query start position, e.g. offset = 0, means the query starts from the 1st row. */

offset?: number;/**the string to search */

searchString?: string;/**the way to read the file */

readFileType?: {

readFileAsync = 0,

createReadStream = 1,};}

8.4.22 Deleting the Node Running Log

- Full name of the interface: delSystemLogger
- Interface abbreviation: none
- Callable methods: Http,Websocket
- Call method: post
- Interface url address: /api/system/delSystemLogger
- Request parameters.

interface DelSystemLogger {/**node administrator address: please refer to <Node Administrator>

for administrator description */

verifyType: string;/**check value: depending on the authority of the node visitor, password check

for node owner and address check for administrator */

verifyKey: string;/** log file name */

loggerName: string;}

8.4.23 Getting the Node Email Address

- Full name of the interface: getEmailAddress

52

- Interface abbreviation: gea
- Callable methods: Http, Websocket, command line, Grpc
- Call method: post
- Interface url address: /api/system/getEmailAddress
- Request parameters.

interface GetEmailAddress {/**node administrator address: please refer to <Node Administrator>

for administrator description */

verifyType: string;/**check value: depending on the authority of the node visitor, password check

for node owner and address check for administrator */

verifyKey: string;/**the email address to check */

emailAddress?: string;}

8.4.24 Setting the Node Email Address

- Full name of the interface: setEmailAddress
- Interface abbreviation: sea
- Callable methods: Http, Websocket, command line, Grpc
- Call method: post
- Interface url address: /api/system/setEmailAddress
- Request parameters.

interface SetEmailAddress {/**node administrator address: please refer to <Node Administrator>

for administrator description */

verifyType: string;/**check value: depending on the authority of the node visitor, password check

for node owner and address check for administrator */

verifyKey: string;/**mailbox receive address */

emailToAddress: string;/**mailbox send address */

emailFromAddress: string;/**mailbox configuration */

emailConfig: {

/**mailbox configuration type: POP3/SMTP/IMAP */

type: string;

/**mailboxConfig host */

host?: string;

/**mailbox configuration port */

port?: number;

/**Whether to enable mailbox security control */

secureConnection?: boolean;

53

/**Whether to enable ssl */

ssl?: boolean;

/**Whether tls is enabled */

tls?: boolean;

/**relay mailbox configured information */

auth?: {

/**relay mailbox configured username */

user: string;

/**relay mailbox configured password */

pass: string;

};};}

8.4.25 Verifying Node Trustees by Node Private Key

- Full name of the interface: verifysystemsecret
- Interface abbreviation: vss
- Callable methods: Http, Websocket, command line, Grpc
- Call method: post
- Interface url address: /api/system/verifySystemSecret
- Request parameters.

interface VerifySystemSecret {/**trustee private key after encryption */

cryptoSecret: string;}

8.4.26 Setting Node Access Whitelist

- Full name of the interface: setSystemWhiteList
- Interface abbreviation: swl
- Callable methods: Http, Websocket, command line, Grpc
- Call method: post
- Interface url address: /api/system/setSystemWhiteList
- Request parameters.

interface SetSystemWhiteList {/**node administrator address: please refer to <Node

Administrator> for administrator description */

verifyType: string;/**check value: depending on the authority of the node visitor, password check

for node owner and address check for administrator */

verifyKey: string;/**white list */

54

whiteList: string[];}

8.4.27 Getting NodeAccess Whitelist

- Full name of the interface: getSystemWhiteList
- Interface abbreviation: gwl
- Callable methods: Http,Websocket,command line,Grpc
- Call method: post
- Interface url address: /api/system/getSystemWhiteList
- Request parameters.

interface GetSystemWhiteList {/**node administrator address: please refer to <Node

Administrator> for administrator description */

verifyType: string;/**check value: depending on the authority of the node visitor, password check

for node owner and address check for administrator */

verifyKey: string;}

8.4.28 Deleting Node Access Whitelist

- Full name of the interface: delSystemWhiteList
- Interface abbreviation: dwl
- Callable methods: Http, Websocket, command line, Grpc
- Call method: post
- Interface url address: /api/system/delSystemWhiteList
- Request parameters.

interface DelSystemWhiteList {/**node administrator address: please refer to <Node

Administrator> for administrator description */

verifyType: string;/**check value: depending on the authority of the node visitor, password check

for node owner and address check for administrator */

verifyKey: string;/* *white list */

whiteList: string[];}

8.4.29 Getting Network-Related Information About a Node Process

- Full name of the interface: getProcessNetwork
- Interface abbreviation: gpn
- Callable methods: Http, Websocket, Command Line, Grpc
- Call method: post
- Interface url address: /api/system/getProcessNetwork
- Request parameters.

interface GetProcessNetwork {/**node administrator address: please refer to <Node

Administrator> for administrator description */

55

verifyType: string;/**check value: depending on the authority of the node visitor, password check

for node owner and address check for administrator */

verifyKey: string;/**query number: for example, limit=10 means you can query 10 pieces of data.

*/

limit?: number;/**query start position: for example, offset = 0 means the query starts from row 1.

*/

offset?: number;/**process type */

processType?: string;}

8.4.30 Getting Node Process CPU Information

- Full name of the interface: getProcessCPU
- Interface abbreviation: gpc
- Callable methods: Http,Websocket,command line,Grpc
- Call method: post
- Interface url address: /api/system/getProcessCPU
- Request parameters.

interface GetProcessCPU {/**node administrator address: please refer to <Node Administrator>

for administrator description */

verifyType: string;/**check value: depending on the authority of the node visitor, password check

for node owner and address check for administrator */

verifyKey: string;/**query number: for example, limit=10 means you can query 10 pieces of data.

*/

limit?: number;/**query start position: for example, offset = 0 means the query starts from row 1.

*/

offset?: number;/**process type */

processType?: string;}

8.4.31 Getting Node Process Memory Information

- Full name of the interface: getProcessMemory
- Interface abbreviation: gpm
- Callable methods: Http, Websocket, Command Line, Grpc
- Call method: post
- Interface url address: /api/system/getProcessMemory
- Request parameters.

interface GetProcessMemory {/**node administrator address: please refer to <Node

Administrator> for administrator description */

56

verifyType: string;/**check value: depending on the authority of the node visitor, password check

for node owner and address check for administrator */

verifyKey: string;/**query number: for example, limit=10 means you can query 10 pieces of data.

*/

limit?: number;/**query start position: for example, offset = 0 means the query starts from row 1.

*/

offset?: number;/**process type */

processType?: string;}

8.4.32 Sending Node Status at Regular Intervals

- Full name of the interface: systemStatus
- Interface abbreviation: ess
- Callable methods: Http, Websocket, command line, Grpc
- Call method: post
- Interface url address: /api/system/systemStatus
- Request parameters.

interface SystemStatus {/**node administrator address: please refer to <Node Administrator> for

administrator description */

verifyType: string;/**check value: depending on the authority of the node visitor, password check

for node owner and address check for administrator */

verifyKey: string;}

8.4.33 Timed Sending of Node CPU, Memory and Network

Information

- Full name of the interface: systemProcess
- Interface abbreviation: esp
- Callable methods: Http, Websocket, command line, Grpc
- Call method: post
- Interface url address: /api/system/systemProcess
- Request parameters.

interface SystemProcess {/**node administrator address: please refer to <Node Administrator> for

administrator description */

verifyType: string;/**check value: depending on the authority of the node visitor, password check

for node owner and address check for administrator */

verifyKey: string;}

57

8.4.34 Getting InformationAbout a Node

- Full name of the interface: getSystemInfo
- Interface abbreviation: none
- Callable methods: Http,Websocket
- Call method: post
- Interface url address: /api/system/getSystemInfo
- Request parameters: None

8.4.35 Getting Node Status

- Full name of the interface: getMachineStatus
- Interface abbreviation: none
- Callable methods: Http,Websocket
- Call method: post
- Interface url address: /api/system/getMachineStatus
- Request parameters: None

9. Application Tools

9.1 Instant Messenger-Secret Chat

Secret Chat is BIWMeta's first blockchain-based decentralized mobile social tool for intra-group
private message exchange. By forming a group of nodes into a logical group or a logical node, the
concept of "virtual group" is built, and when you need to send a message to everyone in the group,
you only need to send a message to this virtual node, realizing the private message sending and
receiving of many-to-many, and building a structural model of group private message exchange
under blockchain. It is a fast and secure structure model for message exchange in blockchain, and
solves the problem of restricted group sending from point to point in blockchain.
It not only supports sending text, pictures, voice and video on the chain, but also supports sharing
and witnessing life to friends through "Square".

9.2 Five Knocks

In the context of the epidemic normalization and the era of economic and technological
globalization, the market environment is becoming more and more competitive, and the survival
of enterprises is becoming more and more difficult. In order to meet the harsh survival challenges
in the modern business environment, finding ways to improve the efficiency of enterprise
management and reduce the cost of business operations is the top priority for enterprises. One of
the effective ways to solve this problem is to change the office model.
Under the traditional centralized office, all employees have fixed departments, fixed leaders, fixed
colleagues, fixed workstations, mature work patterns, and work in a command-based manner. In
the office mode with the leader as the central node, everything is designed to enhance the
efficiency of management as the first priority. The problems brought by this model are:
1) Decision makers in the organization have limited access to information
2) Individuals in the organization have limited knowledge of information, and in a centralized and
hierarchical organizational model, information transfer is easily distorted.

Five Knocks is the first distributed collaborative office tool created by BIWMeta, which breaks
the centralized office method of the past for a long time and is a distributed collaborative office
tool in the Web3.0 value Internet era built with a new decentralized and distributed idea.
This tool, with the blockchain technology of Distributed Autonomous Organization (DAO) as the
consensus rules for the autonomy of each organizational department of the enterprise, realizes the
digital management of the enterprise; with the Secret Chat as the core technology of collaborative

58

office, realizes the cross-organizational and cross-regional communication of members of each
department without barriers.
Although the hierarchy still exists, the organizational structure is no longer centered on
management, but on employees and users. In such an organizational structure, the traditional
hierarchical relationship no longer exists, and the superior, as the reporting object of the
subordinate, is only a way to collect information and only intervene a little when necessary.
Although enterprise management is still hierarchical, user interaction has been decentralized. The
responsibilities and equity of all parties are clarified through negotiation, and an open and
transparent technical framework and procedural rules are formed in the form of smart contracts,
stored on the blockchain, and used as a basis to complete cooperation between individuals.

9.3 Eye of God

Blockchain technology itself is complex, and even technical bullies need to spend a lot of time
learning and deploying it. For example, for Bitcoin and Ether, which are currently mainstream in
the market, only people with professional mining machine deployment ability can participate in
on-chain consensus and get rewarded. This is unfriendly to white users.
To facilitate ordinary users to create blockchains and deploy individual nodes, BIWMeta has
developed a visual chain management tool-Eye of God. Through a visual and customizable
configuration interface, it is easy for each user to custom build their own blockchain and manage
it.

10. BIW Foundation and Equity Distribution

BIWMeta is distributed globally by the BIWMeta Ecological Foundation, a United Arab
Emirates-registered foundation, and BIW is the native equity asset of BIWMeta. The total number
of BIW issued is 21,000,000,000, of which 1,000,000,000 are pre-mining equity and the rest are
generated through mining.

59

11. Disclaimer

This White Paper is not a recommendation that you purchase any BIWMeta, nor is it a document
to which you should refer for any contract or purchase. This white paper does not constitute an
offer to buy or sell, nor does it constitute a contract or commitment of any kind. BIWMeta does
not intend to constitute securities or any other regulated product in any country or jurisdiction.
This White Paper is not the basis for a prospectus or any other offering document for securities
and is not intended to constitute an offering or solicitation of securities or any other regulated
product in any country or jurisdiction. This White Paper has not been reviewed by any regulatory
authority in any country or jurisdiction.
You acknowledge and agree that BIWMeta does not have the following functions:
1. Represent the equity, control or obligations of BIWMeta or any other institution in any
jurisdiction, or the right to participate in or control the application of decisions made by the
foregoing.
2. Represent any type of investment.
3. Represents any marketable security that has intrinsic value or market price.
4. Represents any commodity or asset that any person is obligated to redeem, or to purchase.
By participating in the Program, the participant acknowledges that he or she understands and
agrees to the terms and conditions set forth in these Terms and Conditions and accepts the
potential risks at his or her own risk.
1. Market Risk: If the overall cryptocurrency market is overvalued, then investment risk will
increase and participants may have high expectations of price growth for the Program that may not
be realized.
2. Systemic risk: This refers to force majeure factors, including but not limited to natural disasters
political unrest, etc.
3. Regulatory risk: The trading of cryptocurrencies is highly uncertain, and due to the lack of
strong regulation in the field of cryptocurrency trading, cryptocurrencies are subject to the risk of
sharp rises and falls, etc. Individual participants who are inexperienced in the market may find it
difficult to resist the asset shock and psychological pressure caused by market instability.
4. Project risk: The team will spare no effort to achieve the goals mentioned in the white paper,
and now has a more mature business model, however, due to the unpredictable development trend
of the industry as a whole, the existing business model may not match well with the market
demand, thus making it difficult to achieve profitability. At the same time, as this white paper may
be updated with the implementation of project details, if the updated details of the project are not
accessed by the participants of this program in a timely manner, the participants will have
insufficient knowledge due to information asymmetry, thus affecting the subsequent development
of the project.
5. Technical risks: The project is based on cryptographic algorithms, and the rapid development of
cryptography also brings potential risks of being cracked; blockchain, distributed storage and
other technologies support the core business development, and the team cannot fully guarantee the
implementation of the technology; during the project update process, vulnerabilities may be found
to exist, which can be compensated by releasing updates, but the extent of the impact caused by
vulnerabilities cannot be guaranteed.
6. Hacking and crime risk: In terms of security, electronic tokens are anonymous and difficult to
trace, which are vulnerable to hacking or used by criminals, or may involve illegal asset transfer
and other criminal acts.
7. Policy risk: At present, the international regulatory policy for blockchain projects and financing
with virtual currency parties is still unclear, and there is a certain possibility of loss to participants
due to policy reasons.
8. Unknown risks: With the continuous development of blockchain technology, there may be some
risks that cannot be predicted at present.
This White Paper makes no representations or warranties that the information, representations,
opinions or other matters described or communicated in it in connection with the Program are
correct or complete, nor does it make any representations or warranties as to the results or
reasonableness of any forward-looking or conceptual statements, and the absence of

60

representations and warranties is not limited to the foregoing. Nothing in this White Paper shall
constitute or be deemed to constitute any promise or representation as to the future.
To the full extent permitted by applicable law, we will not be liable or responsible for any loss or
damage arising out of or in connection with any action taken by any person in accordance with
this White Paper, whether by negligence, default or lack of care.
Participants are requested to fully understand the background and overall framework of the team
before participating and to participate rationally.
BIWMeta reserves the right to amend and change the content of this white paper at any time.

Note:
BIW-Meta related products have been launched:
1. Official website: https://www.biw-meta.com
2. Browser: http://www.biw-meta.info
3. Download the BIWMeta wallet:

A. Search for "dweb Browser" in the mobile app market and download directly.
B. Enter "biw-meta.io" in the Browser to download the BIWMeta wallet.

	1. Abstract
	2. Content Overview
	3. Overall Design
	3.1 Open Source Mobile Blockchain System
	3.2 Blockchain Storage Mechanism
	3.2.1 RSD Storage Mechanism
	3.2.2 Private Data Storage
	3.2.3 Distributed Storage

	3.3 Blockchain Network Mechanism
	3.3.1 Full-Link Duplex Communication Network
	3.3.2 Node Addressing
	3.3.3 Bluetooth, NFC, AIRDROP Network Transmission

	3.4 Blockchain Evolution
	3.5 Cross-Chain Transactions
	3.5.1 Cross-Chain Network Interconnection
	3.5.2 Cross-Chain Decoupling
	3.5.3 Cross-Chain Asset Interchange

	3.6 Three-Layer Blockchain Architecture
	3.7 Large Block
	3.8 Address Private Key Management Mechanism-My Se
	3.9 Automatic Upgrade
	3.10 Fork Merging
	3.11 Distributed Computing

	4. Consensus Protocol
	4.1 Consensus Algorithm of BIWMeta
	4.1.1 TPOW+DPOS
	4.1.2 Miner Protocol
	4.1.2.1 Authorized Creation Protocol
	4.1.2.2 Genesis Basic Protocol
	4.1.2.3 Consensus Incentive Agreement
	4.1.2.4 Block Forging Agreement
	4.1.2.5 Contract Execution Protocol
	4.1.2.6 Event Processing Protocol
	4.1.2.7 Proof of Algorithm Protocol
	4.1.2.8 Network Communication Protocol

	4.2 Block Forger (Miner Node) Rotation
	4.2.1 Multi-Node, Multi-Process Block-Generating M
	4.2.2 Block Forger Election Algorithm
	4.2.2.1 Becoming a Trustee
	4.2.2.2 Entering the Candidate zone
	4.2.2.3 Becoming a Forger

	4.2.3 Distributed Transaction Synchronization

	5. Programmable Contracts
	5.1 Smart Contracts
	5.2 Digital Products (DP/NFT)
	5.3 DeFi Support

	6. Programmable Digital Asset Issuance
	6.1 Destruction Issuance (Deflation Mechanism)
	6.2 Decentralized Asset Exchange

	7. Chain Services
	7.1 Chain Domain Name-LNS
	7.2 DWeb
	7.3 Dual Offline Payment
	7.4 On-chain Red Packet
	7.5 Service Market
	7.6 Shuttling the World

	8. Interface Documentation
	8.1 Interface Incoming Parameters and Return Param
	8.1.1 Example of Passing/Entering Parameters

	8.2 Basic Interface
	8.2.1 Getting BIW Version Number
	8.2.2 Getting the Current Latest Block of the Loca
	8.2.3 Getting the Specified Block
	8.2.4 Getting the Specified Event
	8.2.5 Getting the Last Transaction of an Account
	8.2.6 Creating an Account
	8.2.7 Getting Node Status
	8.2.8 Getting the Last Transaction of the Account
	8.2.9 Getting the Event Type

	8.3 Event Class Interface Usage Description
	8.3.1 Transfer Events
	8.3.1.1 Creating a Transfer Event
	8.3.1.2 Creating a Transfer Event (with Security K
	8.3.1.3 Sending a Transfer Event

	8.3.2 Setting Up a Secure Password Event
	8.3.2.1 Creating a Set-Security-Password Event
	8.3.2.2 Creating a Set-Username Event (with Securi
	8.3.2.3 Sending a Set-Security-Password Event

	8.3.3 Setting the User Name Event
	8.3.3.1 Creating a Set-Username Event
	8.3.3.2 Creating a Set-Username Event (with Securi
	8.3.3.3 Sending a Set-Username Event

	8.3.4 Registered Trustee Events
	8.3.4.1 Creating a Registered Trustee Event
	8.3.4.2 Creating a Registered Trustee Event (with
	8.3.4.3 Sending a Registered Trustee Event

	8.3.5 Receiving Polling Events
	8.3.5.1 Creating a Receive-Vote Event
	8.3.5.2 Creating A Receive-Vote Event (with Securi
	8.3.5.3 Sending and Receiving Vote Events

	8.3.6 Rejecting Votes
	8.3.6.1 Creating A Reject-Vote Event
	8.3.6.2 Creating a Reject-Vote Event (with Securit
	8.3.6.3 Sending a Reject-Vote Event

	8.3.7 Polling Events
	8.3.7.1 Creating a Voting Event
	8.3.7.2 Creating a Voting Event (with Security Key
	8.3.7.3 Sending and Receiving a Polling Event

	8.3.8 Publishing Dapp Events
	8.3.8.1 Creating a Release-Dapp Event
	8.3.8.2 Creating an Issue-Dapp Event (with Securit
	8.3.8.3 Sending an Issue-Dapp Event

	8.3.9 Dapp Purchase Events
	8.3.9.1 Creating a Purchase-Dapp Event
	8.3.9.2 Creating a Purchase-Dapp Event (with Secur
	8.3.9.3 Sending a Purchase-Dapp Event

	8.3.10 Depositing Events
	8.3.10.1 Creating a Deposition Event
	8.3.10.2 Creating a Deposit Event (with Security K
	8.3.10.3 Sending a Deposit Event

	8.3.11 Equity Issuance Events
	8.3.11.1 Creating an Equity Issuance Event
	8.3.11.2 Creating an Equity Issuance Event (with S
	8.3.11.3 Sending an Equity Issuance Event

	8.3.12 Equity Destruction Events
	8.3.12.1 Creating an Equity Destruction Event
	8.3.12.2 Create an Equity Destruction Event (with
	8.3.12.3 Sending an Equity Destruction Event

	8.3.13 Equity Exchange Events
	8.3.13.1 Creating an Equity Exchange Event
	8.3.13.2 Creating an Equity Exchange Event (with S
	8.3.13.3 Sending an Equity Exchange Event

	8.3.14 Acceptance of an Equity Exchange Event
	8.3.14.1 Accepting an Equity Exchange Event
	8.3.14.2 Creating an Accept-Equity-Exchange Event
	8.3.14.3 Sending an Accept-Equity-Exchange Event

	8.4 Instructions for Using the Node Management Int
	8.4.1 Safety Close of Node
	8.4.2 Setting Node Password
	8.4.3 Verifying Node Password
	8.4.4 Adding Node Administrator
	8.4.5 Getting Node Administrator
	8.4.6 Verify Node Administrator
	8.4.7 Deleting Node Administrator
	8.4.8 Resetting Node Administrator
	8.4.9 Binding Node Accounts
	8.4.10 Getting Node Trustee
	8.4.11 Querying All Forgers Registered by the Node
	8.4.12 Query Details Of the Forger Registered by t
	8.4.13 Getting Node Details
	8.4.14 Node Information Query
	8.4.15 Setting Node Configuration Information
	8.4.16 Getting Node Configuration Information
	8.4.17 Getting Node State (Real-Time Information)
	8.4.18 Getting Node Access Statistics
	8.4.19 Getting Running Log Type of the Node
	8.4.20 Getting the List of the Node Running Log
	8.4.21 Getting Contents of the Node Running Log
	8.4.22 Deleting the Node Running Log
	8.4.23 Getting the Node Email Address
	8.4.24 Setting the Node Email Address
	8.4.25 Verifying Node Trustees by Node Private Key
	8.4.26 Setting Node Access Whitelist
	8.4.27 Getting Node Access Whitelist
	8.4.28 Deleting Node Access Whitelist
	8.4.29 Getting Network-Related Information About a
	8.4.30 Getting Node Process CPU Information
	8.4.31 Getting Node Process Memory Information
	8.4.32 Sending Node Status at Regular Intervals
	8.4.33 Timed Sending of Node CPU, Memory and Netwo
	8.4.34 Getting Information About a Node
	8.4.35 Getting Node Status

	9. Application Tools
	9.1 Instant Messenger-Secret Chat
	9.2 Five Knocks
	9.3 Eye of God

	10. BIW Foundation and Equity Distribution
	11. Disclaimer

